import torch import torch.nn.functional as F from vllm import activation_ops def ref_silu_and_mul(x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(chunks=2, dim=1) return F.silu(x1) * x2 @torch.inference_mode() def run_silu_and_mul( num_tokens: int, d: int, dtype: torch.dtype, ) -> None: x = torch.randn(num_tokens, 2 * d, dtype=dtype, device='cuda') out = torch.empty(num_tokens, d, dtype=dtype, device='cuda') activation_ops.silu_and_mul(out, x) ref_out = ref_silu_and_mul(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5) def test_silu_and_mul() -> None: for dtype in [torch.half, torch.bfloat16, torch.float]: for num_tokens in [7, 83, 2048]: for d in [512, 4096, 5120, 13824]: print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}') run_silu_and_mul(num_tokens, d, dtype)