"""Sampling parameters for text generation.""" from typing import List, Optional, Union class SamplingParams: """Sampling parameters for text generation. Overall, we follow the sampling parameters from the OpenAI text completion API (https://platform.openai.com/docs/api-reference/completions/create). In addition, we support beam search, which is not supported by OpenAI. Args: n: Number of output sequences to return for the given prompt. best_of: Number of output sequences that are generated from the prompt. From these `best_of` sequences, the top `n` sequences are returned. `best_of` must be greater than or equal to `n`. This is treated as the beam width when `use_beam_search` is True. By default, `best_of` is set to `n`. presence_penalty: Float that penalizes new tokens based on whether they appear in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. frequency_penalty: Float that penalizes new tokens based on their frequency in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. temperature: Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random. Zero means greedy sampling. top_p: Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to 1 to consider all tokens. top_k: Integer that controls the number of top tokens to consider. Set to -1 to consider all tokens. use_beam_search: Whether to use beam search instead of sampling. stop: List of strings that stop the generation when they are generated. The returned output will not contain the stop strings. ignore_eos: Whether to ignore the EOS token and continue generating tokens after the EOS token is generated. max_tokens: Maximum number of tokens to generate per output sequence. logprobs: Number of log probabilities to return per output token. """ def __init__( self, n: int = 1, best_of: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, temperature: float = 1.0, top_p: float = 1.0, top_k: int = -1, use_beam_search: bool = False, stop: Union[str, List[str]] = [], ignore_eos: bool = False, max_tokens: int = 16, logprobs: int = 0, ) -> None: self.n = n self.best_of = best_of if best_of is not None else n self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.temperature = temperature self.top_p = top_p self.top_k = top_k self.use_beam_search = use_beam_search self.stop = [stop] if isinstance(stop, str) else list(stop) self.ignore_eos = ignore_eos self.max_tokens = max_tokens self.logprobs = logprobs self._verify_args() if self.use_beam_search: self._verity_beam_search() elif self.temperature == 0.0: # Zero temperature means greedy sampling. self._verify_greedy_sampling() def _verify_args(self) -> None: if self.n < 1: raise ValueError(f"n must be at least 1, got {self.n}.") if self.best_of < self.n: raise ValueError(f"best_of must be greater than or equal to n, " f"got n={self.n} and best_of={self.best_of}.") if not -2.0 <= self.presence_penalty <= 2.0: raise ValueError("presence_penalty must be in [-2, 2], got " f"{self.presence_penalty}.") if not -2.0 <= self.frequency_penalty <= 2.0: raise ValueError("frequency_penalty must be in [-2, 2], got " f"{self.frequency_penalty}.") if self.temperature < 0.0: raise ValueError( f"temperature must be non-negative, got {self.temperature}.") if not 0.0 < self.top_p <= 1.0: raise ValueError(f"top_p must be in (0, 1], got {self.top_p}.") if self.top_k < -1 or self.top_k == 0: raise ValueError(f"top_k must be -1 (disable), or at least 1, " f"got {self.top_k}.") if self.max_tokens < 1: raise ValueError( f"max_tokens must be at least 1, got {self.max_tokens}.") if self.logprobs < 0: raise ValueError( f"logprobs must be non-negative, got {self.logprobs}.") def _verity_beam_search(self) -> None: if self.best_of == 1: raise ValueError("best_of must be greater than 1 when using beam " f"search. Got {self.best_of}.") if self.temperature > 0.0: raise ValueError("temperature must be 0 when using beam search.") if self.top_p < 1.0: raise ValueError("top_p must be 1 when using beam search.") if self.top_k != -1: raise ValueError("top_k must be -1 when using beam search.") def _verify_greedy_sampling(self) -> None: if self.best_of > 1: raise ValueError("best_of must be 1 when using greedy sampling." f"Got {self.best_of}.") if self.top_p < 1.0: raise ValueError("top_p must be 1 when using greedy sampling.") if self.top_k != -1: raise ValueError("top_k must be -1 when using greedy sampling.") def __repr__(self) -> str: return (f"SamplingParams(n={self.n}, " f"best_of={self.best_of}, " f"presence_penalty={self.presence_penalty}, " f"frequency_penalty={self.frequency_penalty}, " f"temperature={self.temperature}, " f"top_p={self.top_p}, " f"top_k={self.top_k}," f"use_beam_search={self.use_beam_search}, " f"stop={self.stop}, " f"ignore_eos={self.ignore_eos}, " f"max_tokens={self.max_tokens}, " f"logprobs={self.logprobs})")