from typing import Dict, Set class SamplingParams: def __init__( self, n: int, temperature: float, top_p: float, top_k: int, use_beam_search: bool, stop_token_ids: Set[int], max_num_steps: int, num_logprobs: int, ) -> None: if n < 1: raise ValueError(f"n must be at least 1, got {n}.") if temperature < 0.0: raise ValueError( f"temperature must be non-negative, got {temperature}.") if not 0.0 < top_p <= 1.0: raise ValueError(f"top_p must be in (0, 1], got {top_p}.") if top_k < -1 or top_k == 0: raise ValueError(f"top_k must be -1 (disable), or at least 1, " f"got {top_k}.") if max_num_steps < 1: raise ValueError( f"max_num_steps must be at least 1, got {max_num_steps}.") if num_logprobs < 0: raise ValueError( f"num_logprobs must be non-negative, got {num_logprobs}.") if use_beam_search: if n == 1: raise ValueError( "n must be greater than 1 when using beam search.") if temperature > 0.0: raise ValueError( "temperature must be 0 when using beam search.") if top_p < 1.0: raise ValueError( "top_p must be 1 when using beam search.") if top_k != -1: raise ValueError( "top_k must be -1 when using beam search.") elif temperature == 0.0: # Zero temperature means greedy sampling. if n > 1: raise ValueError( "n must be 1 when using greedy sampling.") if top_p < 1.0: raise ValueError( "top_p must be 1 when using greedy sampling.") if top_k != -1: raise ValueError( "top_k must be -1 when using greedy sampling.") self.n = n self.temperature = temperature self.top_p = top_p self.top_k = top_k self.use_beam_search = use_beam_search self.stop_token_ids = stop_token_ids self.max_num_steps = max_num_steps self.num_logprobs = num_logprobs def __repr__(self) -> str: return (f"SamplingParams(n={self.n}, " f"temperature={self.temperature}, " f"top_p={self.top_p}, " f"top_k={self.top_k}," f"use_beam_search={self.use_beam_search}, " f"stop_token_ids={self.stop_token_ids}, " f"max_num_steps={self.max_num_steps}, " f"num_logprobs={self.num_logprobs}") @classmethod def from_dict(cls, d: Dict) -> "SamplingParams": return cls( n=d.get("n", 1), temperature=d.get("temperature", 1.0), top_p=d.get("top_p", 1.0), top_k=d.get("top_k", -1), use_beam_search=d.get("use_beam_search", False), stop_token_ids=set(d.get("stop_token_ids", set())), max_num_steps=d.get("max_num_steps", 16), num_logprobs=d.get("num_logprobs", 0), )