import pytest import torch from vllm.model_executor.layers.activation import FastGELU, NewGELU, SiluAndMul DTYPES = [torch.half, torch.bfloat16, torch.float] NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing D = [512, 4096, 5120, 13824] # Arbitrary values for testing SEEDS = [0] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_silu_and_mul( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, 2 * d, dtype=dtype, device="cuda") layer = SiluAndMul() out = layer(x) ref_out = layer._forward(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_gelu_new( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, d, dtype=dtype, device="cuda") layer = NewGELU() out = layer(x) ref_out = layer._forward(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) def test_gelu_fast( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, d, dtype=dtype, device="cuda") layer = FastGELU() out = layer(x) ref_out = layer._forward(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)