from typing import List, Optional, Tuple, Type import pytest from transformers import AutoTokenizer from vllm.config import VisionLanguageConfig from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets from .utils import check_logprobs_close pytestmark = pytest.mark.vlm HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "USER: \nWhat's the content of the image?\nASSISTANT:", "cherry_blossom": "USER: \nWhat is the season?\nASSISTANT:", "boardwalk": "USER: \nWhat's in this image?\nASSISTANT:", }) def iter_llava_configs(model_name: str): image_hw_to_feature_size = { (336, 336): 576, } for (h, w), f in image_hw_to_feature_size.items(): input_shape = (1, 3, h, w) yield (model_name, VisionLanguageConfig(image_feature_size=f, image_token_id=32000, image_input_shape=input_shape)) model_and_vl_config = [ *iter_llava_configs("llava-hf/llava-1.5-7b-hf"), ] def vllm_to_hf_output(vllm_output: Tuple[List[int], str, Optional[SampleLogprobs]], vlm_config: VisionLanguageConfig, model_id: str): """Sanitize vllm output to be comparable with hf output. The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... It also reduces `output_str` from "bla" to "bla". """ output_ids, output_str, out_logprobs = vllm_output image_token_id = vlm_config.image_token_id tokenizer = AutoTokenizer.from_pretrained(model_id) image_token_str = tokenizer.decode(image_token_id) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) if token_id != image_token_id or output_ids[idx - 1] != image_token_id ] hf_output_str = output_str \ .replace(image_token_str * vlm_config.image_feature_size, "") assert hf_output_str[0] == " " hf_output_str = hf_output_str[1:] if hf_output_ids[-1] == eos_token_id: hf_output_str = hf_output_str + tokenizer.decode(eos_token_id) return hf_output_ids, hf_output_str, out_logprobs def run_test( hf_runner: Type[HfRunner], vllm_runner: Type[VllmRunner], image_assets: _ImageAssets, model_and_config: Tuple[str, VisionLanguageConfig], *, size_factors: List[float], dtype: str, max_tokens: int, num_logprobs: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): """Inference result should be the same between hf and vllm. All the image fixtures for the test is under tests/images. For huggingface runner, we provide the PIL images as input. For vllm runner, we provide MultiModalDataDict objects and corresponding vision language config as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ model_id, vlm_config = model_and_config images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # NOTE: take care of the order. run vLLM first, and then run HF. # vLLM needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with vllm_runner(model_id, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True, **vlm_config.as_cli_args_dict()) as vllm_model: vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model: hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] for hf_outputs, vllm_outputs in zip(hf_outputs_per_image, vllm_outputs_per_image): # TODO: Check whether using original CLIPVisionModel can improve # consistency against HF check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=[ vllm_to_hf_output(vllm_output, vlm_config, model_id) for vllm_output in vllm_outputs ], name_0="hf", name_1="vllm", ) @pytest.mark.parametrize("model_and_config", model_and_vl_config) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) def test_models(hf_runner, vllm_runner, image_assets, model_and_config, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: run_test( hf_runner, vllm_runner, image_assets, model_and_config, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=1, )