from typing import Dict, Set class SamplingParams: def __init__( self, n: int, temperature: float, top_p: float, use_beam_search: bool, stop_token_ids: Set[int], max_num_steps: int, num_logprobs: int, ) -> None: if n < 1: raise ValueError(f'n must be at least 1, got {n}.') if temperature < 0.0: raise ValueError( f'temperature must be non-negative, got {temperature}.') if not 0.0 < top_p <= 1.0: raise ValueError(f'top_p must be in (0, 1], got {top_p}.') if max_num_steps < 1: raise ValueError( f'max_num_steps must be at least 1, got {max_num_steps}.') if num_logprobs < 0: raise ValueError( f'num_logprobs must be non-negative, got {num_logprobs}.') if use_beam_search: if n == 1: raise ValueError( 'n must be greater than 1 when using beam search.') if temperature > 0.0: raise ValueError( 'temperature must be 0 when using beam search.') if top_p < 1.0: raise ValueError( 'top_p must be 1 when using beam search.') elif temperature == 0.0: # Zero temperature means greedy sampling. if n > 1: raise ValueError( 'n must be 1 when using greedy sampling.') if top_p < 1.0: raise ValueError( 'top_p must be 1 when using greedy sampling.') self.n = n self.temperature = temperature self.top_p = top_p self.use_beam_search = use_beam_search self.stop_token_ids = stop_token_ids self.max_num_steps = max_num_steps self.num_logprobs = num_logprobs def __repr__(self) -> str: return (f'SamplingParams(n={self.n}, ' f'temperature={self.temperature}, ' f'top_p={self.top_p}, ' f'use_beam_search={self.use_beam_search}, ' f'stop_token_ids={self.stop_token_ids}, ' f'max_num_steps={self.max_num_steps}, ' f'num_logprobs={self.num_logprobs}') @classmethod def from_dict(cls, d: Dict) -> 'SamplingParams': return cls( n=d.get('n', 1), temperature=d.get('temperature', 1.0), top_p=d.get('top_p', 1.0), use_beam_search=d.get('use_beam_search', False), stop_token_ids=set(d.get('stop_token_ids', set())), max_num_steps=d.get('max_num_steps', 16), num_logprobs=d.get('num_logprobs', 0), )