from contextlib import nullcontext from functools import partial from typing import cast from unittest.mock import MagicMock import numpy as np import pytest from PIL import Image from vllm.config import ModelConfig from vllm.inputs import InputProcessingContext from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.processing import (ProcessingCache, PromptReplacement, _PlaceholderInfo, find_text_matches, find_token_matches, iter_placeholders, iter_token_matches, replace_text_matches, replace_token_matches) from vllm.multimodal.utils import cached_get_tokenizer from vllm.transformers_utils.tokenizer import AnyTokenizer from vllm.utils import full_groupby # yapf: disable @pytest.mark.parametrize( ("token_ids", "match_ids", "expected"), [ ([], [], []), ([], [32000], []), ( [32000, 32000, 32000], [32000], [ { "start_idx": 0, "end_idx": 1 }, { "start_idx": 1, "end_idx": 2 }, { "start_idx": 2, "end_idx": 3 }, ], ), ( [32000, 32000, 32000], [32000, 32000], [{ "start_idx": 0, "end_idx": 2 }], ), ( [32000, 32000, 32000], [32000, 32000, 32000], [{ "start_idx": 0, "end_idx": 3 }], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 32000], [ { "start_idx": 1, "end_idx": 3 }, { "start_idx": 6, "end_idx": 8 }, ], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 32000, 32000, 32000], [ { "start_idx": 1, "end_idx": 5 }, ], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 0, 32000], [], ), ], ) # yapf: enable def test_iter_token_matches(token_ids, match_ids, expected): result = list(iter_token_matches(token_ids, match_ids)) # Manually constructed results assert [item._asdict() for item in result] == expected # Invariants match_lens = [end - start for start, end in result] print("match_lens:", match_lens) # Only displayed on error assert all(match_len == len(match_ids) for match_len in match_lens) # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "expected_by_key"), [ ( [], { "pattern_1": [], "pattern_2": [32000], }, { "pattern_1": [], "pattern_2": [], } ), ( [32000, 32000, 32000, 32000], { "pattern_1": [32000], "pattern_2": [32000, 32000], "pattern_3": [32000, 32000, 32000], }, { "pattern_1": [ { "start_idx": 0, "end_idx": 1 }, { "start_idx": 1, "end_idx": 2 }, { "start_idx": 2, "end_idx": 3 }, { "start_idx": 3, "end_idx": 4 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 2 }, { "start_idx": 2, "end_idx": 4 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 3 }, ], }, ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], { "pattern_1": [28747, 32000], "pattern_2": [28747, 32000, 32000, 32000], "pattern_3": [28747, 0, 32000], }, { "pattern_1": [ { "start_idx": 1, "end_idx": 3 }, { "start_idx": 6, "end_idx": 8 }, ], "pattern_2": [ { "start_idx": 1, "end_idx": 5 }, ], "pattern_3": [], }, ), ], ) # yapf: enable def test_find_token_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to token IDs mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, []).bind(mock_tokenizer) for key, target in target_by_key.items() ] result = find_token_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) # Manually constructed results result_groups = dict(full_groupby(result, key=lambda x: x.modality)) assert { key: [ dict(start_idx=item.start_idx, end_idx=item.end_idx) for item in result_groups.get(key, []) ] for key in expected_by_key } == expected_by_key # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "expected_by_key"), [ # Detokenized test cases of `test_find_token_matches` # using the vocab of llava-hf/llava-v1.6-mistral-7b-hf ( "", { "pattern_1": "", "pattern_2": "", }, { "pattern_1": [{ "start_idx": 0, "end_idx": 0 }], "pattern_2": [], } ), ( "", { "pattern_1": "", "pattern_2": "", "pattern_3": "", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 7 }, { "start_idx": 7, "end_idx": 14 }, { "start_idx": 14, "end_idx": 21 }, { "start_idx": 21, "end_idx": 28 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 14 }, { "start_idx": 14, "end_idx": 28 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 21 }, ], }, ), ( "Image:Image:!", { "pattern_1": "Image:", "pattern_2": "Image:", "pattern_3": "Image:", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 13 }, { "start_idx": 27, "end_idx": 40 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 27 }, ], "pattern_3": [], }, ), # Test regex escape ( "<|image|><|image|>", { "pattern_1": "<|image|>", "pattern_2": "<|image|>", "pattern_3": "<|image|><|image|>", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 9 }, { "start_idx": 16, "end_idx": 25 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 16 }, { "start_idx": 16, "end_idx": 32 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 25 }, ], }, ), ], ) # yapf: enable def test_find_text_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, []).bind(mock_tokenizer) for key, target in target_by_key.items() ] result = find_text_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) # Manually constructed results result_groups = dict(full_groupby(result, key=lambda x: x.modality)) assert { key: [ dict(start_idx=item.start_idx, end_idx=item.end_idx) for item in result_groups.get(key, []) ] for key in expected_by_key } == expected_by_key # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "repl_by_key"), [ ( "Image:Image:!", { # We use `` before `Image:` to test matches that # occur out of order "pattern_1": "", "pattern_2": "Image:", "pattern_3": "!", }, { # Test whether target is confused with replacement "pattern_1": "", # Test empty replacement "pattern_2": "", # Test dynamic replacement (beyond the form of `unit * count`) "pattern_3": "?!?", }, ), ] ) @pytest.mark.parametrize( ("mm_count", "expected"), [ (0, "Image:Image:!"), (1, "Image:?!?"), (2, "?!?"), ] ) # yapf: enable def test_find_replace_text( prompt, target_by_key, repl_by_key, mm_count, expected, ): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer) for key, target in target_by_key.items() ] matches = find_text_matches(prompt, prompt_repls) result = replace_text_matches( prompt, matches, {key: mm_count for key in repl_by_key}, ) # Only displayed on error print("matches:", matches) print("result:", result) # Manually constructed results assert result == expected # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "repl_by_key"), [ # Tokenized test cases of `test_find_replace_text` # using the vocab of llava-hf/llava-v1.6-mistral-7b-hf ( [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], { # We use `` before `Image:` to test matches that # occur out of order "pattern_1": [32000], "pattern_2": [9833, 28747], "pattern_3": [918], }, { # Test whether target is confused with replacement "pattern_1": [32000, 32000], # Test empty replacement "pattern_2": [], # Test dynamic replacement (beyond the form of `unit * count`) "pattern_3": [1550, 918, 1550], }, ), ] ) @pytest.mark.parametrize( ("mm_count", "expected"), [ (0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]), (1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550]), (2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550]), ] ) # yapf: enable def test_find_replace_tokens( prompt, target_by_key, repl_by_key, mm_count, expected, ): # Should not be used since there is nothing to convert to tokens mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer) for key, target in target_by_key.items() ] matches = find_token_matches(prompt, prompt_repls) result = replace_token_matches( prompt, matches, {key: mm_count for key in repl_by_key}, ) # Only displayed on error print("matches:", matches) print("result:", result) # Manually constructed results assert result == expected # yapf: disable @pytest.mark.parametrize( "repl_by_key", [ { "pattern_1": [32000, 32000], "pattern_2": [], "pattern_3": [1550, 918, 1550], }, ], ) @pytest.mark.parametrize( ("prompt", "expected"), [ ( [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], [ _PlaceholderInfo( modality="pattern_1", start_idx=6, replacement=[32000, 32000], ), ], ), ( [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550], [ _PlaceholderInfo( modality="pattern_1", start_idx=1, replacement=[32000, 32000], ), _PlaceholderInfo( modality="pattern_1", start_idx=5, replacement=[32000, 32000], ), _PlaceholderInfo( modality="pattern_3", start_idx=7, replacement=[1550, 918, 1550], ), ], ), ( [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550], [ _PlaceholderInfo( modality="pattern_1", start_idx=1, replacement=[32000, 32000], ), _PlaceholderInfo( modality="pattern_1", start_idx=3, replacement=[32000, 32000], ), _PlaceholderInfo( modality="pattern_3", start_idx=6, replacement=[1550, 918, 1550], ), ], ), ] ) # yapf: enable def test_iter_placeholders( repl_by_key, prompt, expected, ): # Should not be used since there is nothing to convert to tokens mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, [], repl).bind(mock_tokenizer) for key, repl in repl_by_key.items() ] result = list( iter_placeholders( prompt_repls, prompt, # Effectively match all occurrences in the prompt {key: 3 for key in repl_by_key}, )) # Only displayed on error print("result:", result) # Manually constructed results assert result == expected def _rand_img(rng: np.random.RandomState, min_wh: int, max_wh: int): w, h = rng.randint(min_wh, max_wh, size=(2, )) arr = rng.randint(0, 255, size=(w, h, 3), dtype=np.uint8) return Image.fromarray(arr) def _rand_video( rng: np.random.RandomState, min_frames: int, max_frames: int, min_wh: int, max_wh: int, ): # Temporary workaround for https://github.com/huggingface/transformers/issues/35412 num_frames = rng.randint(min_frames, max_frames) num_frames = (num_frames // 2) * 2 w, h = rng.randint(min_wh, max_wh, size=(2, )) return rng.randint(0, 255, size=(num_frames, w, h, 3), dtype=np.uint8) def _rand_audio( rng: np.random.RandomState, min_len: int, max_len: int, sr: int, ): audio_len = rng.randint(min_len, max_len) return rng.rand(audio_len), sr @pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"]) @pytest.mark.parametrize( ("limit", "num_supported", "is_valid"), [(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True), (2, 1, False), (2, 2, True)], ) def test_limit_mm_per_prompt_dummy(model_id, limit, num_supported, is_valid): limit_mm_per_prompt = {"image": limit} model_config = ModelConfig( model=model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="half", revision=None, limit_mm_per_prompt=limit_mm_per_prompt, ) model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config) processor_factory = MULTIMODAL_REGISTRY._processor_factories[model_cls] ctx = InputProcessingContext( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) processor = processor_factory(ctx, cache=None) mock_supported_mm_limits = MagicMock(return_value={"image": num_supported}) processor.get_supported_mm_limits = mock_supported_mm_limits if is_valid: exc_ctx = nullcontext() else: exc_ctx = pytest.raises(ValueError, match="this model only supports") with exc_ctx: processor._get_and_validate_dummy_mm_counts() @pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"]) @pytest.mark.parametrize( ("num_images", "limit", "is_valid"), [(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True), (2, 1, False), (2, 2, True)], ) def test_limit_mm_per_prompt_apply(model_id, num_images, limit, is_valid): limit_mm_per_prompt = {"image": limit} model_config = ModelConfig( model=model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="half", revision=None, limit_mm_per_prompt=limit_mm_per_prompt, ) model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config) processor_factory = MULTIMODAL_REGISTRY._processor_factories[model_cls] ctx = InputProcessingContext( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) processor = processor_factory(ctx, cache=None) rng = np.random.RandomState(0) image = _rand_img(rng, min_wh=128, max_wh=256) if num_images == 0: mm_data = {} elif num_images == 1: mm_data = {"image": image} else: mm_data = {"image": [image] * num_images} if is_valid: exc_ctx = nullcontext() else: exc_ctx = pytest.raises(ValueError, match=f"passed {num_images} image") with exc_ctx: processor.apply( "" * num_images, mm_data=mm_data, hf_processor_mm_kwargs={}, ) def _test_processing_cache_correctness( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): if model_id == "TIGER-Lab/Mantis-8B-siglip-llama3": hf_overrides = {"architectures": ["MantisForConditionalGeneration"]} else: hf_overrides = {} limit_mm_per_prompt = { modality: 3 if supports_multi else 1 for modality, supports_multi in modalities.items() } model_config = ModelConfig( model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=True, seed=0, dtype="float16", revision=None, hf_overrides=hf_overrides, limit_mm_per_prompt=limit_mm_per_prompt, ) model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config) processor_factory = MULTIMODAL_REGISTRY._processor_factories[model_cls] ctx = InputProcessingContext( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) # Ensure that it can fit all of the data cache = ProcessingCache(capacity=1 << 30) baseline_processor = processor_factory(ctx, cache=None) cached_processor = processor_factory(ctx, cache=cache) rng = np.random.RandomState(0) input_to_hit = { "image": Image.new("RGB", size=(128, 128)), "video": np.zeros((4, 128, 128, 3), dtype=np.uint8), "audio": (np.zeros((512, )), 16000), } input_factory = { "image": partial(_rand_img, rng, min_wh=128, max_wh=256), "video": partial(_rand_video, rng, min_frames=2, max_frames=8, min_wh=128, max_wh=256), "audio": partial(_rand_audio, rng, min_len=512, max_len=1024, sr=16000), } for batch_idx in range(num_batches): mm_data = { k: [(input_to_hit[k] if rng.rand() < hit_rate else input_factory[k]()) for _ in range(rng.randint(limit_mm_per_prompt[k]))] for k in modalities } mm_counts = {k: len(vs) for k, vs in mm_data.items()} prompt = baseline_processor._get_dummy_mm_inputs(mm_counts).prompt_text # Drop unnecessary keys and test single -> multi conversion if rng.rand() < simplify_rate: for k in list(mm_data.keys()): if not mm_data[k]: del mm_data[k] elif len(mm_data[k]) == 1: mm_data[k] = mm_data[k][0] baseline_result = baseline_processor.apply( prompt, mm_data=mm_data, hf_processor_mm_kwargs={}, ) cached_result = cached_processor.apply( prompt, mm_data=mm_data, hf_processor_mm_kwargs={}, ) assert baseline_result == cached_result, ( f"Failed ({batch_idx=}, {mm_data=})") # yapf: disable # True if the model supports multiple data items of the modality per request @pytest.mark.parametrize(("model_id", "modalities"), [ ("rhymes-ai/Aria", {"image": True}), ("Salesforce/blip2-opt-2.7b", {"image": False}), ("facebook/chameleon-7b", {"image": False}), ("adept/fuyu-8b", {"image": False}), ("llava-hf/llava-1.5-7b-hf", {"image": True}), ("llava-hf/llava-v1.6-mistral-7b-hf", {"image": True}), ("TIGER-Lab/Mantis-8B-siglip-llama3", {"image": True}), ("mistral-community/pixtral-12b", {"image": True}), ("Qwen/Qwen2-VL-2B-Instruct", {"image": True, "video": True}), ("Qwen/Qwen2-Audio-7B-Instruct", {"audio": True}), ("fixie-ai/ultravox-v0_3", {"audio": True}), ]) @pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0]) @pytest.mark.parametrize("num_batches", [32]) @pytest.mark.parametrize("simplify_rate", [1.0]) # yapf: enable def test_processing_cache_correctness( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): _test_processing_cache_correctness( model_id, modalities, hit_rate=hit_rate, num_batches=num_batches, simplify_rate=simplify_rate, ) # yapf: disable @pytest.mark.parametrize(("model_id", "modalities"), [ ("microsoft/Phi-3-vision-128k-instruct", {"image": True}), ]) @pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0]) @pytest.mark.parametrize("num_batches", [32]) @pytest.mark.parametrize("simplify_rate", [1.0]) # yapf: enable def test_processing_cache_correctness_phi3v( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): # HACK - this is an attempted workaround for the following bug # https://github.com/huggingface/transformers/issues/34307 from transformers import AutoImageProcessor # noqa: F401 from transformers import AutoProcessor # noqa: F401 AutoImageProcessor.from_pretrained(model_id, trust_remote_code=True) _test_processing_cache_correctness( model_id, modalities, hit_rate=hit_rate, num_batches=num_batches, simplify_rate=simplify_rate, )