# SPDX-License-Identifier: Apache-2.0 """ This example shows how to use vLLM for running offline inference with the correct prompt format on vision language models for multimodal embedding. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ from argparse import Namespace from typing import Literal, NamedTuple, Optional, TypedDict, Union, get_args from PIL.Image import Image from vllm import LLM from vllm.multimodal.utils import fetch_image from vllm.utils import FlexibleArgumentParser class TextQuery(TypedDict): modality: Literal["text"] text: str class ImageQuery(TypedDict): modality: Literal["image"] image: Image class TextImageQuery(TypedDict): modality: Literal["text+image"] text: str image: Image QueryModality = Literal["text", "image", "text+image"] Query = Union[TextQuery, ImageQuery, TextImageQuery] class ModelRequestData(NamedTuple): llm: LLM prompt: str image: Optional[Image] def run_e5_v(query: Query): llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n' # noqa: E501 if query["modality"] == "text": text = query["text"] prompt = llama3_template.format( f"{text}\nSummary above sentence in one word: ") image = None elif query["modality"] == "image": prompt = llama3_template.format( "\nSummary above image in one word: ") image = query["image"] else: modality = query['modality'] raise ValueError(f"Unsupported query modality: '{modality}'") llm = LLM( model="royokong/e5-v", task="embed", max_model_len=4096, ) return ModelRequestData( llm=llm, prompt=prompt, image=image, ) def run_vlm2vec(query: Query): if query["modality"] == "text": text = query["text"] prompt = f"Find me an everyday image that matches the given caption: {text}" # noqa: E501 image = None elif query["modality"] == "image": prompt = "<|image_1|> Find a day-to-day image that looks similar to the provided image." # noqa: E501 image = query["image"] elif query["modality"] == "text+image": text = query["text"] prompt = f"<|image_1|> Represent the given image with the following question: {text}" # noqa: E501 image = query["image"] else: modality = query['modality'] raise ValueError(f"Unsupported query modality: '{modality}'") llm = LLM( model="TIGER-Lab/VLM2Vec-Full", task="embed", trust_remote_code=True, mm_processor_kwargs={"num_crops": 4}, ) return ModelRequestData( llm=llm, prompt=prompt, image=image, ) def get_query(modality: QueryModality): if modality == "text": return TextQuery(modality="text", text="A dog sitting in the grass") if modality == "image": return ImageQuery( modality="image", image=fetch_image( "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/American_Eskimo_Dog.jpg/360px-American_Eskimo_Dog.jpg" # noqa: E501 ), ) if modality == "text+image": return TextImageQuery( modality="text+image", text="A cat standing in the snow.", image=fetch_image( "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Felis_catus-cat_on_snow.jpg/179px-Felis_catus-cat_on_snow.jpg" # noqa: E501 ), ) msg = f"Modality {modality} is not supported." raise ValueError(msg) def run_encode(model: str, modality: QueryModality): query = get_query(modality) req_data = model_example_map[model](query) mm_data = {} if req_data.image is not None: mm_data["image"] = req_data.image outputs = req_data.llm.embed({ "prompt": req_data.prompt, "multi_modal_data": mm_data, }) for output in outputs: print(output.outputs.embedding) def main(args: Namespace): run_encode(args.model_name, args.modality) model_example_map = { "e5_v": run_e5_v, "vlm2vec": run_vlm2vec, } if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using vLLM for offline inference with ' 'vision language models for multimodal embedding') parser.add_argument('--model-name', '-m', type=str, default="vlm2vec", choices=model_example_map.keys(), help='The name of the embedding model.') parser.add_argument('--modality', type=str, default="image", choices=get_args(QueryModality), help='Modality of the input.') args = parser.parse_args() main(args)