# vLLM TPU Profiling This script is used to profile the TPU performance of vLLM for specific prefill or decode token shapes. Note: an actual running server is a mix of both prefill of many shapes and decode of many shapes. We assume you are on a TPU already (this was tested on TPU v6e) and have installed vLLM according to the [installation guide](https://docs.vllm.ai/en/latest/getting_started/installation/ai_accelerator/index.html). > In all examples below, we run several warmups before (so `--enforce-eager` is okay) ## Profile Examples ### Generate Prefill Trace This example runs Qwen/Qwen2.5-7B-Instruct with a single request of 1024 input tokens. This is set up in attempt to profile just the prefill time and operations. ```bash export XLA_HLO_DEBUG=1 export MODEL=Qwen/Qwen2.5-7B-Instruct export VLLM_TPU_PROFILE_DURATION_MS=3000 export VLLM_TPU_PROFILE_DELAY_MS=0 python3 profiling.py \ --model $MODEL \ --input-len 1024 --output-len 1 \ --batch-size 1 --enforce-eager \ --max-model-len 2048 \ --tensor-parallel-size 1 \ --profile-result-dir profiles ``` ### Generate Decode Trace This example runs Llama 3.1 70B with a batch of 32 requests where each has 1 input token and 128 output tokens. This is set up in attempt to profile just the 32 decodes running in parallel by having an extremely small prefill of 1 token and setting `VLLM_TPU_PROFILE_DELAY_MS=1000` to skip the first second of inference (hopefully prefill). ```bash export XLA_HLO_DEBUG=1 export MODEL=meta-llama/Llama-3.1-70B-Instruct export VLLM_TPU_PROFILE_DURATION_MS=2000 export VLLM_TPU_PROFILE_DELAY_MS=1000 rm -rf ~/.cache/vllm/xla_cache python3 profiling.py \ --model $MODEL \ --input-len 1 \ --output-len 128 \ --batch-size 32 \ --enforce-eager \ --profile-result-dir profiles \ --max-model-len 2048 --tensor-parallel-size 8 ``` ## Visualizing the profiles Once you have collected your profiles with this script, you can visualize them using [TensorBoard](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm). Here are most likely the dependencies you need to install: ```bash pip install tensorflow-cpu tensorboard-plugin-profile etils importlib_resources ``` Then you just need to point TensorBoard to the directory where you saved the profiles and visit `http://localhost:6006/` in your browser: ```bash tensorboard --logdir profiles/ --port 6006 ```