#include #include namespace cacheflow { template __global__ void rotary_embedding_neox_kernel( scalar_t* __restrict__ out_query, // [num_tokens, num_heads, head_size] scalar_t* __restrict__ out_key, // [num_tokens, num_heads, head_size] const int64_t* __restrict__ positions, // [num_tokens] const scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size] const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size] const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, head_size // 2] const int num_heads, const int head_size) { // Each thread block is responsible for one token. const int token_idx = blockIdx.x; int64_t pos = positions[token_idx]; const scalar_t* cache_ptr = cos_sin_cache + pos * head_size; const int embed_dim = head_size / 2; const int n = num_heads * head_size; for (int i = threadIdx.x; i < n; i += blockDim.x) { const int idx = token_idx * n + i; const int head_idx = i / head_size; const int head_offset = i % head_size; const int token_head = token_idx * n + head_idx * head_size; const bool is_first_half = head_offset < embed_dim; const int rot_offset = head_offset % embed_dim; const int x_index = rot_offset; const int y_index = embed_dim + rot_offset; const scalar_t cos = __ldg(cache_ptr + x_index); const scalar_t sin = __ldg(cache_ptr + y_index); const scalar_t q_x = __ldg(query + token_head + x_index); const scalar_t q_y = __ldg(query + token_head + y_index); const scalar_t q_cos = is_first_half ? q_x : q_y; const scalar_t q_sin = is_first_half ? -q_y : q_x; out_query[idx] = q_cos * cos + q_sin * sin; const scalar_t k_x = __ldg(key + token_head + x_index); const scalar_t k_y = __ldg(key + token_head + y_index); const scalar_t k_cos = is_first_half ? k_x : k_y; const scalar_t k_sin = is_first_half ? -k_y : k_x; out_key[idx] = k_cos * cos + k_sin * sin; } } } // namespace cacheflow void rotary_embedding_neox( torch::Tensor& out_query, // [num_tokens, num_heads * head_size] torch::Tensor& out_key, // [num_tokens, num_heads * head_size] torch::Tensor& positions, // [num_tokens] torch::Tensor& query, // [num_tokens, num_heads * head_size] torch::Tensor& key, // [num_tokens, num_heads * head_size] torch::Tensor& cos_sin_cache) // [max_position, head_size] { int num_tokens = query.size(0); int head_size = cos_sin_cache.size(1); int num_heads = query.size(1) / head_size; dim3 grid(num_tokens); dim3 block(std::min(num_heads * head_size, 512)); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); AT_DISPATCH_FLOATING_TYPES_AND_HALF( query.scalar_type(), "rotary_embedding_neox", [&] { cacheflow::rotary_embedding_neox_kernel<<>>( out_query.data_ptr(), out_key.data_ptr(), positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), num_heads, head_size); }); }