cmake_minimum_required(VERSION 3.26) # When building directly using CMake, make sure you run the install step # (it places the .so files in the correct location). # # Example: # mkdir build && cd build # cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_INSTALL_PREFIX=.. .. # cmake --build . --target install # # If you want to only build one target, make sure to install it manually: # cmake --build . --target _C # cmake --install . --component _C project(vllm_extensions LANGUAGES CXX) # CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py) set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM") message(STATUS "Build type: ${CMAKE_BUILD_TYPE}") message(STATUS "Target device: ${VLLM_TARGET_DEVICE}") include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake) # Suppress potential warnings about unused manually-specified variables set(ignoreMe "${VLLM_PYTHON_PATH}") # Prevent installation of dependencies (cutlass) by default. install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS) # # Supported python versions. These versions will be searched in order, the # first match will be selected. These should be kept in sync with setup.py. # set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11" "3.12") # Supported NVIDIA architectures. set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0") # Supported AMD GPU architectures. set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100") # # Supported/expected torch versions for CUDA/ROCm. # # Currently, having an incorrect pytorch version results in a warning # rather than an error. # # Note: the CUDA torch version is derived from pyproject.toml and various # requirements.txt files and should be kept consistent. The ROCm torch # versions are derived from Dockerfile.rocm # set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0") set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0") # # Try to find python package with an executable that exactly matches # `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions. # if (VLLM_PYTHON_EXECUTABLE) find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}") else() message(FATAL_ERROR "Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version" " before running cmake configure.") endif() # # Update cmake's `CMAKE_PREFIX_PATH` with torch location. # append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path") # Ensure the 'nvcc' command is in the PATH find_program(NVCC_EXECUTABLE nvcc) if (CUDA_FOUND AND NOT NVCC_EXECUTABLE) message(FATAL_ERROR "nvcc not found") endif() # # Import torch cmake configuration. # Torch also imports CUDA (and partially HIP) languages with some customizations, # so there is no need to do this explicitly with check_language/enable_language, # etc. # find_package(Torch REQUIRED) # message(STATUS "Enabling core extension.") # Define _core_C extension # built for (almost) every target platform, (excludes TPU and Neuron) set(VLLM_EXT_SRC "csrc/core/torch_bindings.cpp") define_gpu_extension_target( _core_C DESTINATION vllm LANGUAGE CXX SOURCES ${VLLM_EXT_SRC} COMPILE_FLAGS ${CXX_COMPILE_FLAGS} USE_SABI 3 WITH_SOABI) # # Forward the non-CUDA device extensions to external CMake scripts. # if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND NOT VLLM_TARGET_DEVICE STREQUAL "rocm") if (VLLM_TARGET_DEVICE STREQUAL "cpu") include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake) else() return() endif() return() endif() # # Set up GPU language and check the torch version and warn if it isn't # what is expected. # if (NOT HIP_FOUND AND CUDA_FOUND) set(VLLM_GPU_LANG "CUDA") if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA}) message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} " "expected for CUDA build, saw ${Torch_VERSION} instead.") endif() elseif(HIP_FOUND) set(VLLM_GPU_LANG "HIP") # Importing torch recognizes and sets up some HIP/ROCm configuration but does # not let cmake recognize .hip files. In order to get cmake to understand the # .hip extension automatically, HIP must be enabled explicitly. enable_language(HIP) # ROCm 5.X and 6.X if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM}) message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} " "expected for ROCm build, saw ${Torch_VERSION} instead.") endif() else() message(FATAL_ERROR "Can't find CUDA or HIP installation.") endif() # # Override the GPU architectures detected by cmake/torch and filter them by # the supported versions for the current language. # The final set of arches is stored in `VLLM_GPU_ARCHES`. # override_gpu_arches(VLLM_GPU_ARCHES ${VLLM_GPU_LANG} "${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}") # # Query torch for additional GPU compilation flags for the given # `VLLM_GPU_LANG`. # The final set of arches is stored in `VLLM_GPU_FLAGS`. # get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG}) # # Set nvcc parallelism. # if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA") list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}") endif() include(FetchContent) # # Define other extension targets # # # _C extension # set(VLLM_EXT_SRC "csrc/cache_kernels.cu" "csrc/attention/attention_kernels.cu" "csrc/pos_encoding_kernels.cu" "csrc/activation_kernels.cu" "csrc/layernorm_kernels.cu" "csrc/quantization/gptq/q_gemm.cu" "csrc/quantization/compressed_tensors/int8_quant_kernels.cu" "csrc/quantization/fp8/common.cu" "csrc/cuda_utils_kernels.cu" "csrc/moe_align_block_size_kernels.cu" "csrc/prepare_inputs/advance_step.cu" "csrc/torch_bindings.cpp") if(VLLM_GPU_LANG STREQUAL "CUDA") SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library") # Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case. set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use") FetchContent_Declare( cutlass GIT_REPOSITORY https://github.com/nvidia/cutlass.git GIT_TAG v3.5.1 GIT_PROGRESS TRUE # Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history. # Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags. # So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE GIT_SHALLOW TRUE ) FetchContent_MakeAvailable(cutlass) list(APPEND VLLM_EXT_SRC "csrc/mamba/mamba_ssm/selective_scan_fwd.cu" "csrc/mamba/causal_conv1d/causal_conv1d.cu" "csrc/quantization/aqlm/gemm_kernels.cu" "csrc/quantization/awq/gemm_kernels.cu" "csrc/quantization/marlin/dense/marlin_cuda_kernel.cu" "csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu" "csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu" "csrc/quantization/gptq_marlin/gptq_marlin.cu" "csrc/quantization/gptq_marlin/gptq_marlin_repack.cu" "csrc/quantization/gptq_marlin/awq_marlin_repack.cu" "csrc/quantization/gguf/gguf_kernel.cu" "csrc/quantization/fp8/fp8_marlin.cu" "csrc/custom_all_reduce.cu" "csrc/permute_cols.cu" "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu" "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu" "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu") # # The CUTLASS kernels for Hopper require sm90a to be enabled. # This is done via the below gencode option, BUT that creates kernels for both sm90 and sm90a. # That adds an extra 17MB to compiled binary, so instead we selectively enable it. if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0) set_source_files_properties( "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu" PROPERTIES COMPILE_FLAGS "-gencode arch=compute_90a,code=sm_90a") endif() # # Machete kernels # The machete kernels only work on hopper and require CUDA 12.0 or later. if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0) # # For the Machete kernels we automatically generate sources for various # preselected input type pairs and schedules. # Generate sources: execute_process( COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH ${Python_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py RESULT_VARIABLE machete_generation_result OUTPUT_VARIABLE machete_generation_output OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log ) if (NOT machete_generation_result EQUAL 0) message(FATAL_ERROR "Machete generation failed." " Result: \"${machete_generation_result}\"" "\nCheck the log for details: " "${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log") else() message(STATUS "Machete generation completed successfully.") endif() # Add machete generated sources file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu") list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES}) message(STATUS "Machete generated sources: ${MACHETE_GEN_SOURCES}") set_source_files_properties( ${MACHETE_GEN_SOURCES} PROPERTIES COMPILE_FLAGS "-gencode arch=compute_90a,code=sm_90a") endif() # Add pytorch binding for machete (add on even CUDA < 12.0 so that we can # raise an error if the user that this was built with an incompatible # CUDA version) list(APPEND VLLM_EXT_SRC csrc/quantization/machete/machete_pytorch.cu) endif() message(STATUS "Enabling C extension.") define_gpu_extension_target( _C DESTINATION vllm LANGUAGE ${VLLM_GPU_LANG} SOURCES ${VLLM_EXT_SRC} COMPILE_FLAGS ${VLLM_GPU_FLAGS} ARCHITECTURES ${VLLM_GPU_ARCHES} INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR} USE_SABI 3 WITH_SOABI) # If CUTLASS is compiled on NVCC >= 12.5, it by default uses # cudaGetDriverEntryPointByVersion as a wrapper to avoid directly calling the # driver API. This causes problems when linking with earlier versions of CUDA. # Setting this variable sidesteps the issue by calling the driver directly. target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1) # # _moe_C extension # set(VLLM_MOE_EXT_SRC "csrc/moe/torch_bindings.cpp" "csrc/moe/topk_softmax_kernels.cu") if(VLLM_GPU_LANG STREQUAL "CUDA") list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/marlin_moe_ops.cu") endif() message(STATUS "Enabling moe extension.") define_gpu_extension_target( _moe_C DESTINATION vllm LANGUAGE ${VLLM_GPU_LANG} SOURCES ${VLLM_MOE_EXT_SRC} COMPILE_FLAGS ${VLLM_GPU_FLAGS} ARCHITECTURES ${VLLM_GPU_ARCHES} USE_SABI 3 WITH_SOABI) if(VLLM_GPU_LANG STREQUAL "HIP") # # _rocm_C extension # set(VLLM_ROCM_EXT_SRC "csrc/rocm/torch_bindings.cpp" "csrc/rocm/attention.cu") define_gpu_extension_target( _rocm_C DESTINATION vllm LANGUAGE ${VLLM_GPU_LANG} SOURCES ${VLLM_ROCM_EXT_SRC} COMPILE_FLAGS ${VLLM_GPU_FLAGS} ARCHITECTURES ${VLLM_GPU_ARCHES} USE_SABI 3 WITH_SOABI) endif() # vllm-flash-attn currently only supported on CUDA if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda") return() endif () # # Build vLLM flash attention from source # # IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM. # Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs. # They should be identical but if they aren't, this is a massive footgun. # # The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place. # To only install vllm-flash-attn, use --component vllm_flash_attn_c. # If no component is specified, vllm-flash-attn is still installed. # If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading. # This is to enable local development of vllm-flash-attn within vLLM. # It can be set as an environment variable or passed as a cmake argument. # The environment variable takes precedence. if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR}) set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR}) endif() if(VLLM_FLASH_ATTN_SRC_DIR) FetchContent_Declare(vllm-flash-attn SOURCE_DIR ${VLLM_FLASH_ATTN_SRC_DIR}) else() FetchContent_Declare( vllm-flash-attn GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git GIT_TAG 013f0c4fc47e6574060879d9734c1df8c5c273bd GIT_PROGRESS TRUE ) endif() # Set the parent build flag so that the vllm-flash-attn library does not redo compile flag and arch initialization. set(VLLM_PARENT_BUILD ON) # Ensure the vllm/vllm_flash_attn directory exists before installation install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" COMPONENT vllm_flash_attn_c) # Make sure vllm-flash-attn install rules are nested under vllm/ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" COMPONENT vllm_flash_attn_c) install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c) install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" COMPONENT vllm_flash_attn_c) # Fetch the vllm-flash-attn library FetchContent_MakeAvailable(vllm-flash-attn) message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}") # Restore the install prefix install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c) install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" COMPONENT vllm_flash_attn_c) # Copy over the vllm-flash-attn python files install( DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/ DESTINATION vllm/vllm_flash_attn COMPONENT vllm_flash_attn_c FILES_MATCHING PATTERN "*.py" ) # Nothing after vllm-flash-attn, see comment about macros above