"""1D LLaMA model compatible with HuggingFace weights.""" from typing import Dict, List, Optional, Tuple import torch from torch import nn from transformers import LlamaConfig from cacheflow.sequence import SequenceOutputs from cacheflow.model_executor.input_metadata import InputMetadata from cacheflow.model_executor.layers.activation import SiluAndMul from cacheflow.model_executor.layers.layernorm import RMSNorm from cacheflow.model_executor.layers.attention import GPTNeoXCacheFlowAttention from cacheflow.model_executor.layers.sampler import Sampler from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator, load_tensor_parallel_weights) from cacheflow.model_executor.parallel_utils.parallel_state import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from cacheflow.model_executor.parallel_utils.tensor_parallel import ( VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear) from cacheflow.sequence import SequenceOutputs KVCache = Tuple[torch.Tensor, torch.Tensor] class LlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_up_proj = ColumnParallelLinear(hidden_size, 2 * intermediate_size, bias=False, gather_output=False, perform_initialization=False) self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, input_is_parallel=True, perform_initialization=False) if hidden_act != 'silu': raise ValueError(f'Unsupported activation: {hidden_act}. ' 'Only silu is supported for now.') self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class LlamaAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, ): super().__init__() self.hidden_size = hidden_size tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = self.total_num_heads // tensor_model_parallel_world_size self.head_dim = hidden_size // self.total_num_heads self.scaling = self.head_dim ** -0.5 self.qkv_proj = ColumnParallelLinear( hidden_size, 3 * self.total_num_heads * self.head_dim, bias=False, gather_output=False, perform_initialization=False, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, input_is_parallel=True, perform_initialization=False, ) self.attn = GPTNeoXCacheFlowAttention(self.scaling, self.head_dim) def forward( self, positions: torch.LongTensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, cache_event: Optional[torch.cuda.Event], ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) k_cache, v_cache = kv_cache attn_output = self.attn( positions, q, k, v, k_cache, v_cache, input_metadata, cache_event) output, _ = self.o_proj(attn_output) return output class LlamaDecoderLayer(nn.Module): def __init__(self, config: LlamaConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LlamaAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, ) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.LongTensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, cache_event: Optional[torch.cuda.Event], ) -> torch.Tensor: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, input_metadata=input_metadata, cache_event=cache_event, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class LlamaModel(nn.Module): def __init__(self, config: LlamaConfig): super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size, perform_initialization=False) self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.LongTensor, positions: torch.LongTensor, kv_caches: List[KVCache], input_metadata: InputMetadata, cache_events: Optional[List[torch.cuda.Event]], ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) for i in range(len(self.layers)): if cache_events is None: cache_event = None else: cache_event = cache_events[i] layer = self.layers[i] hidden_states = layer( positions, hidden_states, kv_caches[i], input_metadata, cache_event, ) hidden_states = self.norm(hidden_states) return hidden_states class LlamaForCausalLM(nn.Module): def __init__(self, config): super().__init__() self.config = config self.model = LlamaModel(config) self.lm_head = ColumnParallelLinear(config.hidden_size, config.vocab_size, bias=False, gather_output=False, perform_initialization=False) self.sampler = Sampler(config.vocab_size) def forward( self, input_ids: torch.LongTensor, positions: torch.LongTensor, kv_caches: List[KVCache], input_metadata: InputMetadata, cache_events: Optional[List[torch.cuda.Event]], ) -> Dict[int, SequenceOutputs]: hidden_states = self.model( input_ids, positions, kv_caches, input_metadata, cache_events) next_tokens = self.sampler( self.lm_head.weight, hidden_states, input_metadata) return next_tokens _column_parallel_weights = ["embed_tokens.weight", "lm_head.weight", "qkv_proj.weight", "gate_proj.weight", "up_proj.weight"] _row_parallel_weights = ["o_proj.weight", "down_proj.weight"] def load_weights(self, model_name_or_path: str, cache_dir: Optional[str] = None, use_np_cache: bool = False): tensor_model_parallel_rank = get_tensor_model_parallel_rank() state_dict = self.state_dict() for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, use_np_cache): if "rotary_emb.inv_freq" in name: continue is_attention_weight = False for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]): if att_weight_name not in name: continue param = state_dict[name.replace(att_weight_name, "qkv_proj")] shard_size = param.shape[0] // 3 loaded_weight = loaded_weight[ shard_size * tensor_model_parallel_rank :shard_size * (tensor_model_parallel_rank + 1)] param_slice = param.data[shard_size * stride_id :shard_size * (stride_id + 1)] assert param_slice.shape == loaded_weight.shape param_slice.copy_(loaded_weight) is_attention_weight = True break if is_attention_weight: continue is_gate_up_weight = False for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]): if weight_name not in name: continue param = state_dict[name.replace(weight_name, "gate_up_proj")] shard_size = param.shape[0] // 2 loaded_weight = loaded_weight[ shard_size * tensor_model_parallel_rank :shard_size * (tensor_model_parallel_rank + 1)] param_slice = param.data[shard_size * stride_id :shard_size * (stride_id + 1)] assert param_slice.shape == loaded_weight.shape param_slice.copy_(loaded_weight) is_gate_up_weight = True break if is_gate_up_weight: continue param = state_dict[name] load_tensor_parallel_weights(param, loaded_weight, name, self._column_parallel_weights, self._row_parallel_weights, tensor_model_parallel_rank)