import pytest import vllm.engine.metrics MODELS = [ "facebook/opt-125m", ] @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [128]) def test_metrics( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: vllm_model = vllm_runner(model, dtype=dtype, disable_log_stats=False) tokenizer = vllm_model.model.get_tokenizer() prompt_token_counts = [len(tokenizer.encode(p)) for p in example_prompts] # This test needs at least 2 prompts in a batch of different lengths to verify their token count is correct despite padding. assert len(example_prompts) > 1, "at least 2 prompts are required" assert prompt_token_counts[0] != prompt_token_counts[1], ( "prompts of different lengths are required") vllm_prompt_token_count = sum(prompt_token_counts) _ = vllm_model.generate_greedy(example_prompts, max_tokens) metric_count = vllm.engine.metrics.counter_prompt_tokens.get_value({}) assert vllm_prompt_token_count == metric_count, ( f"prompt token count: {vllm_prompt_token_count!r}\nmetric: {metric_count!r}" )