# SPDX-License-Identifier: Apache-2.0 from dataclasses import dataclass from typing import Optional, Union import torch from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights class DummyLoRAManager: def __init__(self, device: torch.device = "cuda:0"): super().__init__() self._loras: dict[str, LoRALayerWeights] = {} self._device = device def set_module_lora(self, module_name: str, lora: LoRALayerWeights): self._loras[module_name] = lora def get_module_lora(self, module_name: str) -> LoRALayerWeights: return self._loras[module_name] def init_random_lora( self, module_name: str, weight: torch.Tensor, rank: int = 8, generate_embeddings_tensor: int = 0, ): lora = LoRALayerWeights( module_name, rank=rank, lora_alpha=1, lora_a=torch.rand([weight.shape[1], rank], dtype=weight.dtype, device=self._device), lora_b=torch.rand([rank, weight.shape[0]], dtype=weight.dtype, device=self._device), ) if generate_embeddings_tensor: lora.embeddings_tensor = torch.rand( 5, generate_embeddings_tensor, dtype=weight.dtype, device=self._device, ) self.set_module_lora(module_name, lora) return lora def init_lora( self, module_name: str, input_dim: int, output_dim: int, rank=8, noop=False, embeddings_tensor=None, ): lora = LoRALayerWeights( module_name, rank=rank, lora_alpha=1, lora_a=torch.rand([input_dim, rank], device="cuda"), lora_b=torch.rand([rank, output_dim], device="cuda"), embeddings_tensor=embeddings_tensor, ) self.set_module_lora(module_name, lora) return lora def reset_lora(self): self._loras = {} def init_packed_lora( self, module_name: str, input_dim: int, output_dims: list[int], noop_lora_index: Optional[list[int]] = None, rank: int = 8, ): base_loras: list[LoRALayerWeights] = [] noop_lora_index_set = set(noop_lora_index or []) for i, out_dim in enumerate(output_dims): base_lora = self.init_lora( module_name + "_000_" + str(i), input_dim, out_dim, rank=rank, noop=i in noop_lora_index_set, ) base_loras.append(base_lora) packed_lora = PackedLoRALayerWeights.pack(base_loras) self.set_module_lora(module_name, packed_lora) return packed_lora def assert_close(a, b): rtol, atol = { torch.float16: (6e-2, 6e-2), torch.bfloat16: (6e-2, 6e-2), torch.float32: (1e-2, 1e-2), }[a.dtype] torch.testing.assert_close(a, b, rtol=rtol, atol=atol) @dataclass class PunicaTensors: inputs_tensor: torch.Tensor lora_weights: Union[torch.Tensor, list[torch.Tensor]] our_out_tensor: torch.Tensor ref_out_tensor: torch.Tensor b_seq_start_loc: torch.Tensor prompt_lora_mapping: torch.Tensor seq_len_tensor: torch.Tensor token_lora_mapping: torch.Tensor def meta(self) -> tuple[int, int]: """ Infer max_seq_length and token_nums from the tensors and return them. """ max_seq_length = self.seq_len_tensor.max() token_nums = self.seq_len_tensor.sum().item() if isinstance(max_seq_length, tuple): max_seq_length = max_seq_length[0].item() else: max_seq_length = max_seq_length.item() return max_seq_length, token_nums def generate_data( batches, hidden_size, lora_nums, max_rank, seq_length, dtype, op_type, device, ) -> PunicaTensors: seq_len_tensor = torch.randint(seq_length, seq_length + 1, (batches, )).to(device) b_seq_start_loc = torch.cumsum( torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long), dim=0, ).to(device) total_tokens = seq_len_tensor.sum() if op_type == "shrink": inputs_tensor = torch.rand((total_tokens, hidden_size), dtype=dtype).to(device) lora_weights = torch.rand( (lora_nums, max_rank, hidden_size), # col-major dtype=dtype, ).to(device) # shrink op need atomic_add, so output is initinized by 0 ref_out_tensor = torch.zeros((total_tokens, max_rank), dtype=dtype, device=inputs_tensor.device) # NOTE shrink kernel using torch.float32 as output type our_out_tensor = torch.zeros((total_tokens, max_rank), dtype=torch.float32).to(device) else: inputs_tensor = torch.rand( (total_tokens, max_rank), dtype=dtype, ).to(device) lora_weights = torch.rand( (lora_nums, hidden_size, max_rank), # col-major dtype=dtype, ).to(device) # expand op needs to complete y+=a@lora_b, so output is # initinized randomly ref_out_tensor = torch.rand( (total_tokens, hidden_size), dtype=dtype, ).to(device) # Ensure the same input. our_out_tensor = ref_out_tensor.clone() lora_indices_tensor = torch.randint(0, lora_nums - 1 if lora_nums > 1 else 1, (batches, )).to(device) indices = torch.zeros((total_tokens), dtype=torch.long).to(device) current_offset = 0 for b_id in range(batches): lora_index = lora_indices_tensor[b_id] indices[current_offset:current_offset + seq_len_tensor[b_id]].copy_(lora_index) current_offset += seq_len_tensor[b_id].item() return PunicaTensors( inputs_tensor, lora_weights, our_out_tensor, ref_out_tensor, b_seq_start_loc, lora_indices_tensor, seq_len_tensor, indices, ) def generate_data_for_expand_nslices( batches, hidden_size, lora_nums, max_rank, seq_length, dtype, nslices, device, ) -> PunicaTensors: seq_len_tensor = torch.randint(seq_length, seq_length + 1, (batches, )).to(device) b_seq_start_loc = torch.cumsum( torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long), dim=0, ).to(device) total_tokens = seq_len_tensor.sum() inputs_tensor = torch.rand( (total_tokens, max_rank), dtype=dtype, ).to(device) lora_weights_lst = [] for _ in range(nslices): lora_weights_lst.append( torch.rand( (lora_nums, hidden_size, max_rank), # col-major dtype=dtype, ).to(device)) # expand op needs to complete y+=a@lora_b, so output is # initinized randomly ref_out_tensor = torch.rand((total_tokens, hidden_size * nslices), dtype=dtype).to(device) # Ensure the same input. our_out_tensor = ref_out_tensor.clone() lora_indices_tensor = torch.randint(0, lora_nums - 1 if lora_nums > 1 else 1, (batches, )) indices = torch.zeros((total_tokens), dtype=torch.long).to(device) current_offset = 0 for b_id in range(batches): lora_index = lora_indices_tensor[b_id] indices[current_offset:current_offset + seq_len_tensor[b_id]] = (lora_index.item()) current_offset += seq_len_tensor[b_id].item() lora_indices_tensor = lora_indices_tensor.to(device) return PunicaTensors( inputs_tensor, lora_weights_lst, our_out_tensor, ref_out_tensor, b_seq_start_loc, lora_indices_tensor, seq_len_tensor, indices, ) def generate_data_for_nslices( batches, hidden_size, lora_nums, max_rank, seq_length, nslices, dtype, op_type, device, ) -> PunicaTensors: seq_len_tensor = torch.randint(seq_length, seq_length + 1, (batches, )).to(device) b_seq_start_loc = torch.cumsum( torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long), dim=0, ).to(device) total_tokens = seq_len_tensor.sum() lora_weights_lst = [] if op_type == "shrink": inputs_tensor = torch.rand((total_tokens, hidden_size), dtype=dtype).to(device) for _ in range(nslices): if op_type == "shrink": lora_weights_lst.append( torch.rand( (lora_nums, max_rank, hidden_size), # col-major dtype=dtype, ).to(device)) # NOTE shrink kernel using torch.float32 as output type # shrink op need atomic_add, so output is initinized by 0 our_out_tensor = torch.zeros( (nslices, total_tokens, max_rank), dtype=torch.float32, ).to(device) else: inputs_tensor = torch.rand( (nslices, total_tokens, max_rank), dtype=dtype, ).to(device) for _ in range(nslices): lora_weights_lst.append( torch.rand( (lora_nums, hidden_size, max_rank), # col-major dtype=dtype, ).to(device)) # expand op needs to complete y+=a@lora_b, so output is # initinized randomly our_out_tensor = torch.rand((total_tokens, hidden_size * nslices), dtype=dtype).to(device) # Ensure the same input. ref_out_tensor = our_out_tensor.clone() lora_indices_tensor = torch.randint(0, lora_nums - 1 if lora_nums > 1 else 1, (batches, )) indices = torch.zeros((total_tokens), dtype=torch.long).to(device) current_offset = 0 for b_id in range(batches): lora_index = lora_indices_tensor[b_id] indices[current_offset:current_offset + seq_len_tensor[b_id]] = (lora_index.item()) current_offset += seq_len_tensor[b_id].item() lora_indices_tensor = lora_indices_tensor.to(device) return PunicaTensors( inputs_tensor, lora_weights_lst, our_out_tensor, ref_out_tensor, b_seq_start_loc, lora_indices_tensor, seq_len_tensor, indices, )