(generative-models)= # Generative Models vLLM provides first-class support for generative models, which covers most of LLMs. In vLLM, generative models implement the {class}`~vllm.model_executor.models.VllmModelForTextGeneration` interface. Based on the final hidden states of the input, these models output log probabilities of the tokens to generate, which are then passed through {class}`~vllm.model_executor.layers.Sampler` to obtain the final text. For generative models, the only supported `--task` option is `"generate"`. Usually, this is automatically inferred so you don't have to specify it. ## Offline Inference The {class}`~vllm.LLM` class provides various methods for offline inference. See [Engine Arguments](#engine-args) for a list of options when initializing the model. ### `LLM.generate` The {class}`~vllm.LLM.generate` method is available to all generative models in vLLM. It is similar to [its counterpart in HF Transformers](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate), except that tokenization and detokenization are also performed automatically. ```python from vllm import LLM llm = LLM(model="facebook/opt-125m") outputs = llm.generate("Hello, my name is") for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` You can optionally control the language generation by passing {class}`~vllm.SamplingParams`. For example, you can use greedy sampling by setting `temperature=0`: ```python from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m") params = SamplingParams(temperature=0) outputs = llm.generate("Hello, my name is", params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` :::{important} By default, vLLM will use sampling parameters recommended by model creator by applying the `generation_config.json` from the huggingface model repository if it exists. In most cases, this will provide you with the best results by default if {class}`~vllm.SamplingParams` is not specified. However, if vLLM's default sampling parameters are preferred, please pass `generation_config="vllm"` when creating the {class}`~vllm.LLM` instance. ::: A code example can be found here: ### `LLM.beam_search` The {class}`~vllm.LLM.beam_search` method implements [beam search](https://huggingface.co/docs/transformers/en/generation_strategies#beam-search-decoding) on top of {class}`~vllm.LLM.generate`. For example, to search using 5 beams and output at most 50 tokens: ```python from vllm import LLM from vllm.sampling_params import BeamSearchParams llm = LLM(model="facebook/opt-125m") params = BeamSearchParams(beam_width=5, max_tokens=50) outputs = llm.beam_search([{"prompt": "Hello, my name is "}], params) for output in outputs: generated_text = output.sequences[0].text print(f"Generated text: {generated_text!r}") ``` ### `LLM.chat` The {class}`~vllm.LLM.chat` method implements chat functionality on top of {class}`~vllm.LLM.generate`. In particular, it accepts input similar to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat) and automatically applies the model's [chat template](https://huggingface.co/docs/transformers/en/chat_templating) to format the prompt. :::{important} In general, only instruction-tuned models have a chat template. Base models may perform poorly as they are not trained to respond to the chat conversation. ::: ```python from vllm import LLM llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct") conversation = [ { "role": "system", "content": "You are a helpful assistant" }, { "role": "user", "content": "Hello" }, { "role": "assistant", "content": "Hello! How can I assist you today?" }, { "role": "user", "content": "Write an essay about the importance of higher education.", }, ] outputs = llm.chat(conversation) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` A code example can be found here: If the model doesn't have a chat template or you want to specify another one, you can explicitly pass a chat template: ```python from vllm.entrypoints.chat_utils import load_chat_template # You can find a list of existing chat templates under `examples/` custom_template = load_chat_template(chat_template="") print("Loaded chat template:", custom_template) outputs = llm.chat(conversation, chat_template=custom_template) ``` ## Online Serving Our [OpenAI-Compatible Server](#openai-compatible-server) provides endpoints that correspond to the offline APIs: - [Completions API](#completions-api) is similar to `LLM.generate` but only accepts text. - [Chat API](#chat-api) is similar to `LLM.chat`, accepting both text and [multi-modal inputs](#multimodal-inputs) for models with a chat template.