.. _installation: Installation ============ vLLM is a Python library that also contains pre-compiled C++ and CUDA (12.1) binaries. Requirements ------------ * OS: Linux * Python: 3.8 -- 3.11 * GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.) Install with pip ---------------- You can install vLLM using pip: .. code-block:: console $ # (Optional) Create a new conda environment. $ conda create -n myenv python=3.9 -y $ conda activate myenv $ # Install vLLM with CUDA 12.1. $ pip install vllm .. note:: As of now, vLLM's binaries are compiled on CUDA 12.1 by default. However, you can install vLLM with CUDA 11.8 by running: .. code-block:: console $ # Install vLLM with CUDA 11.8. $ export VLLM_VERSION=0.2.4 $ export PYTHON_VERSION=39 $ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl $ # Re-install PyTorch with CUDA 11.8. $ pip uninstall torch -y $ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118 .. _build_from_source: Build from source ----------------- You can also build and install vLLM from source: .. code-block:: console $ git clone https://github.com/vllm-project/vllm.git $ cd vllm $ pip install -e . # This may take 5-10 minutes. .. tip:: If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image. .. code-block:: console $ # Use `--ipc=host` to make sure the shared memory is large enough. $ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3