import argparse import json import random import time from typing import List, Tuple from cacheflow import LLM, SamplingParams from transformers import PreTrainedTokenizerBase def sample_requests( dataset_path: str, num_requests: int, tokenizer: PreTrainedTokenizerBase, ) -> List[Tuple[List[int], int]]: # Load the dataset. with open(dataset_path) as f: dataset = json.load(f) # Filter out the conversations with less than 2 turns. dataset = [ data for data in dataset if len(data["conversations"]) >= 2 ] # Only keep the first two turns of each conversation. dataset = [ (data["conversations"][0]["value"], data["conversations"][1]["value"]) for data in dataset ] # Tokenize the prompts and completions. prompts = [prompt for prompt, _ in dataset] prompt_token_ids = tokenizer(prompts).input_ids completions = [completion for _, completion in dataset] completion_token_ids = tokenizer(completions).input_ids tokenized_dataset = [] for i in range(len(dataset)): output_len = len(completion_token_ids[i]) tokenized_dataset.append((prompt_token_ids[i], output_len)) # Filter out if the prompt length + output length is greater than 2048. tokenized_dataset = [ (prompt_token_ids, output_len) for prompt_token_ids, output_len in tokenized_dataset if len(prompt_token_ids) + output_len <= 2048 ] # Sample the requests. sampled_requests = random.sample(tokenized_dataset, num_requests) return sampled_requests def main(args: argparse.Namespace): print(args) random.seed(args.seed) llm = LLM( model=args.model, tensor_parallel_size=args.tensor_parallel_size, seed=args.seed, ) tokenizer = llm.get_tokenizer() requests = sample_requests(args.dataset, args.num_prompts, tokenizer) # Add the requests to the server. for prompt_token_ids, output_len in requests: sampling_params = SamplingParams( n=args.n, temperature=0.0 if args.use_beam_search else 1.0, top_p=1.0, use_beam_search=args.use_beam_search, ignore_eos=True, max_tokens=output_len, ) # FIXME(woosuk): Do not use internal method. llm._add_request( prompt="", sampling_params=sampling_params, prompt_token_ids=prompt_token_ids, ) start = time.time() # FIXME(woosuk): Do use internal method. llm._run_server(use_tqdm=True) end = time.time() total_num_tokens = sum( len(prompt_token_ids) + output_len for prompt_token_ids, output_len in requests ) print(f"Throughput: {total_num_tokens / (end - start):.2f} tokens/s") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Benchmark the throughput.") parser.add_argument("--dataset", type=str, required=True, help="Path to the dataset.") parser.add_argument("--model", type=str, default="facebook/opt-125m") parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1) parser.add_argument("--n", type=int, default=1, help="Number of generated sequences per prompt.") parser.add_argument("--use-beam-search", action="store_true") parser.add_argument("--num-prompts", type=int, default=1000, help="Number of prompts to process.") parser.add_argument("--seed", type=int, default=0) args = parser.parse_args() main(args)