#include "cache.h" #include "cuda_utils.h" #include "ops.h" #include PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { // vLLM custom ops pybind11::module ops = m.def_submodule("ops", "vLLM custom operators"); // Attention ops ops.def("paged_attention_v1", &paged_attention_v1, "Compute the attention between an input query and the cached " "keys/values using PagedAttention."); ops.def("paged_attention_v2", &paged_attention_v2, "PagedAttention V2."); // Activation ops ops.def("silu_and_mul", &silu_and_mul, "Activation function used in SwiGLU."); ops.def("gelu_and_mul", &gelu_and_mul, "Activation function used in GeGLU with `none` approximation."); ops.def("gelu_tanh_and_mul", &gelu_tanh_and_mul, "Activation function used in GeGLU with `tanh` approximation."); ops.def("gelu_new", &gelu_new, "GELU implementation used in GPT-2."); ops.def("gelu_fast", &gelu_fast, "Approximate GELU implementation."); // Layernorm ops.def("rms_norm", &rms_norm, "Apply Root Mean Square (RMS) Normalization to the input tensor."); ops.def("fused_add_rms_norm", &fused_add_rms_norm, "In-place fused Add and RMS Normalization"); // Rotary embedding ops.def("rotary_embedding", &rotary_embedding, "Apply GPT-NeoX or GPT-J style rotary embedding to query and key"); ops.def("batched_rotary_embedding", &batched_rotary_embedding, "Apply GPT-NeoX or GPT-J style rotary embedding to query and key " "(supports multiple loras)"); // Quantization ops #ifndef USE_ROCM ops.def("aqlm_gemm", &aqlm_gemm, "Quantized GEMM for AQLM"); ops.def("aqlm_dequant", &aqlm_dequant, "Decompression method for AQLM"); ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ"); ops.def("marlin_gemm", &marlin_gemm, "Marlin (Dense) Optimized Quantized GEMM for GPTQ"); ops.def("gptq_marlin_24_gemm", &gptq_marlin_24_gemm, "Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ"); ops.def("gptq_marlin_gemm", &gptq_marlin_gemm, "gptq_marlin Optimized Quantized GEMM for GPTQ"); ops.def("gptq_marlin_repack", &gptq_marlin_repack, "gptq_marlin repack from GPTQ"); ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ"); ops.def("cutlass_scaled_mm_dq", &cutlass_scaled_mm_dq, "CUTLASS w8a8 GEMM, supporting symmetric per-tensor or " "per-row/column quantization."); #endif ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ"); ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ"); ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM"); ops.def("static_scaled_fp8_quant", &static_scaled_fp8_quant, "Compute FP8 quantized tensor for given scaling factor"); ops.def("dynamic_scaled_fp8_quant", &dynamic_scaled_fp8_quant, "Compute FP8 quantized tensor and scaling factor"); ops.def("moe_align_block_size", &moe_align_block_size, "Aligning the number of tokens to be processed by each expert such " "that it is divisible by the block size."); // Cache ops pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops"); cache_ops.def("swap_blocks", &swap_blocks, "Swap in (out) the cache blocks from src to dst"); cache_ops.def("copy_blocks", ©_blocks, "Copy the cache blocks from src to dst"); cache_ops.def("reshape_and_cache", &reshape_and_cache, "Reshape the key and value tensors and cache them"); cache_ops.def("reshape_and_cache_flash", &reshape_and_cache_flash, "Reshape the key and value tensors and cache them"); cache_ops.def("convert_fp8", &convert_fp8, "Convert the key and value cache to fp8 data type"); // Cuda utils pybind11::module cuda_utils = m.def_submodule("cuda_utils", "vLLM cuda utils"); cuda_utils.def("get_device_attribute", &get_device_attribute, "Gets the specified device attribute."); cuda_utils.def("get_max_shared_memory_per_block_device_attribute", &get_max_shared_memory_per_block_device_attribute, "Gets the maximum shared memory per block device attribute."); #ifndef USE_ROCM // Custom all-reduce kernels pybind11::module custom_ar = m.def_submodule("custom_ar", "custom allreduce"); custom_ar.def("init_custom_ar", &init_custom_ar, "init_custom_ar"); custom_ar.def("should_custom_ar", &should_custom_ar, "should_custom_ar"); custom_ar.def("all_reduce_reg", &all_reduce_reg, "all_reduce_reg"); custom_ar.def("all_reduce_unreg", &all_reduce_unreg, "all_reduce_unreg"); custom_ar.def("dispose", &dispose, "dispose"); custom_ar.def("meta_size", &meta_size, "meta_size"); custom_ar.def("register_buffer", ®ister_buffer, "register_buffer"); custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta, "get_graph_buffer_ipc_meta"); custom_ar.def("register_graph_buffers", ®ister_graph_buffers, "register_graph_buffers"); #endif }