# SPDX-License-Identifier: Apache-2.0 """Tests whether PTPC w8a8 FP8 computation is enabled correctly. Run `pytest tests/quantization/test_ptpc_fp8.py --forked`. """ import pytest import torch from tests.quantization.utils import is_quant_method_supported from vllm.model_executor.layers.quantization.fp8 import Fp8KVCacheMethod from vllm.model_executor.layers.quantization.ptpc_fp8 import ( PTPCFp8LinearMethod) from vllm.platforms import current_platform @pytest.mark.skipif(not is_quant_method_supported("ptpc_fp8"), reason="PTPC FP8 is not supported on this GPU type.") @pytest.mark.skipif(not current_platform.is_rocm(), reason="This test is for ROCm GPU.") @pytest.mark.parametrize("dtype", ["auto", "bfloat16", "float16"]) @pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8", "fp8_e4m3"]) def test_ptpc_fp8_rocm(vllm_runner, dtype: str, kv_cache_dtype: str) -> None: try: with vllm_runner("facebook/opt-125m", dtype=dtype, quantization="ptpc_fp8", kv_cache_dtype=kv_cache_dtype) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 fc1 = model.model.decoder.layers[0].fc1 assert isinstance(fc1.quant_method, PTPCFp8LinearMethod) if kv_cache_dtype == "ptpc_fp8": attn = model.model.decoder.layers[0].self_attn.attn assert isinstance(attn.quant_method, Fp8KVCacheMethod) assert attn._k_scale == 1.0 assert attn._v_scale == 1.0 if current_platform.has_device_capability(94): # For GPUs with hardware support, we keep weights in fp8 assert fc1.weight.dtype == torch.float8_e4m3fnuz else: pytest.skip() output = llm.generate_greedy("Hello my name is", max_tokens=20) assert output except AssertionError as e: if str( e ) == "Currently torch._scaled_mm (hipBLASLt) rowwise gemm only support output dtype of bfloat16. torch.float16 is specified.": # noqa: E501 # If the error message matches, the test passes pass else: # If the error message does not match, re-raise the exception raise