from io import BytesIO import requests from PIL import Image from vllm import LLM, SamplingParams def run_llava_next(): llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=4096) prompt = "[INST] \nWhat is shown in this image? [/INST]" url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg" image = Image.open(BytesIO(requests.get(url).content)) sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=100) outputs = llm.generate( { "prompt": prompt, "multi_modal_data": { "image": image } }, sampling_params=sampling_params) generated_text = "" for o in outputs: generated_text += o.outputs[0].text print(f"LLM output:{generated_text}") if __name__ == "__main__": run_llava_next()