"""Compare the outputs of HF and vLLM when using greedy sampling. Run `pytest tests/models/test_models.py`. """ import pytest from ...utils import check_logprobs_close @pytest.mark.parametrize( "model", [ pytest.param( "bigscience/bloom-560m", # bloom - testing alibi slopes marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "openai-community/gpt2", # gpt2 marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param("Milos/slovak-gpt-j-405M"), # gptj pytest.param("bigcode/tiny_starcoder_py"), # gpt_bigcode pytest.param("EleutherAI/pythia-70m"), # gpt_neox pytest.param( "google/gemma-1.1-2b-it", # gemma marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "meta-llama/Llama-3.2-1B-Instruct", # llama marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "openbmb/MiniCPM3-4B", # fused_moe not supported on CPU marks=[pytest.mark.core_model], ), pytest.param( "facebook/opt-125m", # opt marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "microsoft/phi-2", # phi marks=[pytest.mark.core_model], ), pytest.param( "Qwen/Qwen2.5-0.5B-Instruct", # qwen2 marks=[pytest.mark.core_model], ), pytest.param("stabilityai/stablelm-3b-4e1t"), # stablelm pytest.param("bigcode/starcoder2-3b"), # starcoder2 pytest.param( "ehristoforu/Falcon3-MoE-2x7B-Insruct", # mixtral marks=[pytest.mark.cpu_model], ) ]) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [32]) @pytest.mark.parametrize("num_logprobs", [5]) def test_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, num_logprobs: int, ) -> None: with hf_runner(model, dtype=dtype) as hf_model: hf_outputs = hf_model.generate_greedy_logprobs_limit( example_prompts, max_tokens, num_logprobs) with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.generate_greedy_logprobs( example_prompts, max_tokens, num_logprobs) # This test is for verifying whether the model's extra_repr # can be printed correctly. def print_model(model): print(model) vllm_model.apply_model(print_model) check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", )