"""An example showing how to use vLLM to serve multimodal models and run online inference with OpenAI client. Launch the vLLM server with the following command: (single image inference with Llava) vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja (multi-image inference with Phi-3.5-vision-instruct) vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \ --trust-remote-code --limit-mm-per-prompt image=2 (audio inference with Ultravox) vllm serve fixie-ai/ultravox-v0_3 --max-model-len 4096 """ import base64 import requests from openai import OpenAI from vllm.assets.audio import AudioAsset from vllm.utils import FlexibleArgumentParser # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def encode_base64_content_from_url(content_url: str) -> str: """Encode a content retrieved from a remote url to base64 format.""" with requests.get(content_url) as response: response.raise_for_status() result = base64.b64encode(response.content).decode('utf-8') return result # Text-only inference def run_text_only() -> None: chat_completion = client.chat.completions.create( messages=[{ "role": "user", "content": "What's the capital of France?" }], model=model, max_tokens=64, ) result = chat_completion.choices[0].message.content print("Chat completion output:", result) # Single-image input inference def run_single_image() -> None: ## Use image url in the payload image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this image?" }, { "type": "image_url", "image_url": { "url": image_url }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output from image url:", result) ## Use base64 encoded image in the payload image_base64 = encode_base64_content_from_url(image_url) chat_completion_from_base64 = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this image?" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_base64}" }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_base64.choices[0].message.content print("Chat completion output from base64 encoded image:", result) # Multi-image input inference def run_multi_image() -> None: image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg" image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg" chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What are the animals in these images?" }, { "type": "image_url", "image_url": { "url": image_url_duck }, }, { "type": "image_url", "image_url": { "url": image_url_lion }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output:", result) # Audio input inference def run_audio() -> None: # Any format supported by librosa is supported audio_url = AudioAsset("winning_call").url # Use audio url in the payload chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this audio?" }, { "type": "audio_url", "audio_url": { "url": audio_url }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output from audio url:", result) audio_base64 = encode_base64_content_from_url(audio_url) chat_completion_from_base64 = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this audio?" }, { "type": "audio_url", "audio_url": { # Any format supported by librosa is supported "url": f"data:audio/ogg;base64,{audio_base64}" }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_base64.choices[0].message.content print("Chat completion output from base64 encoded audio:", result) example_function_map = { "text-only": run_text_only, "single-image": run_single_image, "multi-image": run_multi_image, "audio": run_audio, } def main(args) -> None: chat_type = args.chat_type example_function_map[chat_type]() if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using OpenAI client for online inference with ' 'multimodal language models served with vLLM.') parser.add_argument( '--chat-type', '-c', type=str, default="single-image", choices=["text-only", "single-image", "multi-image", "audio"], help='Conversation type with multimodal data.') args = parser.parse_args() main(args)