"""Compare the outputs of a GPTQ model to a Marlin model. Note: GPTQ and Marlin do not have bitwise correctness. As a result, in this test, we just confirm that the top selected tokens of the Marlin/GPTQ models are in the top 3 selections of each other. Note: Marlin internally uses locks to synchronize the threads. This can result in very slight nondeterminism for Marlin. As a result, we re-run the test up to 3 times to see if we pass. Run `pytest tests/models/test_marlin.py`. """ from dataclasses import dataclass import pytest import torch from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS capability = torch.cuda.get_device_capability() capability = capability[0] * 10 + capability[1] marlin_not_supported = (capability < QUANTIZATION_METHODS["marlin"].get_min_capability()) @dataclass class ModelPair: model_marlin: str model_gptq: str model_pairs = [ ModelPair(model_marlin="nm-testing/zephyr-beta-7b-marlin-g128", model_gptq="nm-testing/zephyr-beta-7b-gptq-g128"), ModelPair(model_marlin="robertgshaw2/zephyr-7b-beta-channelwise-marlin", model_gptq="robertgshaw2/zephyr-7b-beta-channelwise-gptq"), ModelPair(model_marlin="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin", model_gptq="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-gptq") ] @pytest.mark.flaky(reruns=2) @pytest.mark.skipif(marlin_not_supported, reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("model_pair", model_pairs) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [32]) @pytest.mark.parametrize("num_logprobs", [5]) def test_models( vllm_runner, example_prompts, model_pair: ModelPair, dtype: str, max_tokens: int, num_logprobs: int, ) -> None: marlin_model = vllm_runner(model_pair.model_marlin, dtype=dtype) marlin_outputs = marlin_model.generate_greedy_logprobs( example_prompts, max_tokens, num_logprobs) # Note: not sure why, but deleting just the model on Ada Lovelace # does not free the GPU memory. On Ampere, deleting the just model # frees the memory. del marlin_model gptq_model = vllm_runner(model_pair.model_gptq, dtype=dtype) gptq_outputs = gptq_model.generate_greedy_logprobs(example_prompts, max_tokens, num_logprobs) # Note: not sure why, but deleting just the model on Ada Lovelace # does not free the GPU memory. On Ampere, deleting the just model # frees the memory. del gptq_model # loop through the prompts for prompt_idx in range(len(example_prompts)): gptq_output_ids, gptq_output_str, gptq_logprobs = gptq_outputs[ prompt_idx] marlin_output_ids, marlin_output_str, marlin_logprobs = marlin_outputs[ prompt_idx] for idx, (gptq_output_id, marlin_output_id) in enumerate( zip(gptq_output_ids, marlin_output_ids)): # If sequence is not an exact match, if marlin_output_id != gptq_output_id: # Each predicted token must be in top 5 of the other's assert gptq_output_id in marlin_logprobs[idx], ( f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\n" f"Marlin:\t{marlin_output_str!r}") assert marlin_output_id in gptq_logprobs[idx], ( f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\n" f"Marlin:\t{marlin_output_str!r}") # Break out since sequences will now diverge. break