# SPDX-License-Identifier: Apache-2.0 """Tests for Idefics3's multimodal preprocessing kwargs.""" import pytest from transformers import Idefics3Config from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.utils import cached_get_tokenizer from ....conftest import _ImageAssets from ...utils import build_model_context models = ["HuggingFaceM4/Idefics3-8B-Llama3"] @pytest.mark.parametrize("model", models) # yapf: disable @pytest.mark.parametrize( ("mm_processor_kwargs", "expected_toks_per_img"), [ ({"size": {"longest_edge": 364}}, 169), ({"size": {"longest_edge": 728}}, 169 * (2**2 + 1)), ]) # yapf: enable @pytest.mark.parametrize("num_imgs", [1, 2]) def test_processor_override(image_assets: _ImageAssets, model: str, mm_processor_kwargs: dict[str, object], expected_toks_per_img: int, num_imgs: int): """Ensure input_processor_for_idefics3 handles num_crops properly.""" # Same as the previous test - don't initialize mm_processor_kwargs # in this test and assume that the kwargs will be correctly expanded by # the partial when calling the custom input processor. ctx = build_model_context( model_name=model, tokenizer_name=model, trust_remote_code=True, mm_processor_kwargs=None, limit_mm_per_prompt={"image": num_imgs}, ) tokenizer = cached_get_tokenizer(ctx.model_config.tokenizer) processor = MULTIMODAL_REGISTRY.create_processor( ctx.model_config, tokenizer=tokenizer, ) hf_processor = processor.info.get_hf_processor(**mm_processor_kwargs) # Build the image str / prompt based on the number of images we pass placeholders = "" if num_imgs == 1 else "\n".join( f"Image-{i}: \n" for i in range(1, num_imgs + 1)) prompt = f"<|begin_of_text|>User:{placeholders}\n\nAssistant:" # noqa: E501 # Build mm_data image_size = ctx.get_hf_config(Idefics3Config).vision_config.image_size dummy_image_size = (image_size * 4, image_size * 4) dummy_image = image_assets[0].pil_image.resize(dummy_image_size) mm_data = {"image": [dummy_image] * num_imgs} processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs) # Ensure the placeholders format are correct hf_processed_inputs = hf_processor(text=prompt, images=mm_data["image"]) assert processed_inputs["prompt_token_ids"] == hf_processed_inputs[ "input_ids"][0] # Ensure we have the right number of placeholders per num_crops size image_token_id = ctx.get_hf_config().image_token_id img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id) assert img_tok_count == expected_toks_per_img * num_imgs