.. _installation_rocm: Installation with ROCm ====================== vLLM 0.2.4 onwards supports model inferencing and serving on AMD GPUs with ROCm. At the moment AWQ quantization is not supported in ROCm, but SqueezeLLM quantization has been ported. Data types currently supported in ROCm are FP16 and BF16. Requirements ------------ * OS: Linux * Python: 3.8 -- 3.11 (Verified on 3.10) * GPU: MI200s * Pytorch 2.0.1/2.1.1/2.2 * ROCm 5.7 Installation options: #. :ref:`(Recommended) Quick start with vLLM pre-installed in Docker Image ` #. :ref:`Build from source ` #. :ref:`Build from source with docker ` .. _quick_start_docker_rocm: (Recommended) Option 1: Quick start with vLLM pre-installed in Docker Image --------------------------------------------------------------------------- .. code-block:: console $ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.4 $ docker run -it \ --network=host \ --group-add=video \ --ipc=host \ --cap-add=SYS_PTRACE \ --security-opt seccomp=unconfined \ --device /dev/kfd \ --device /dev/dri \ -v :/app/model \ embeddedllminfo/vllm-rocm \ bash .. _build_from_source_rocm: Option 2: Build from source --------------------------- You can build and install vLLM from source: 0. Install prerequisites (skip if you are already in an environment/docker with the following installed): - `ROCm `_ - `Pytorch `_ .. code-block:: console $ pip install torch==2.2.0.dev20231206+rocm5.7 --index-url https://download.pytorch.org/whl/nightly/rocm5.7 # tested version 1. Install `flash attention for ROCm `_ Install ROCm's flash attention (v2.0.4) following the instructions from `ROCmSoftwarePlatform/flash-attention `_ .. note:: - If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly. - If you fail to install `ROCmSoftwarePlatform/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`. - ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention. - You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`) 2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention .. code-block:: console $ pip install xformers==0.0.23 --no-deps $ bash patch_xformers.rocm.sh 3. Build vLLM. .. code-block:: console $ cd vllm $ pip install -U -r requirements-rocm.txt $ python setup.py install # This may take 5-10 minutes. Currently, `pip install .`` does not work for ROCm installation .. _build_from_source_docker_rocm: Option 3: Build from source with docker ----------------------------------------------------- You can build and install vLLM from source: Build a docker image from `Dockerfile.rocm`, and launch a docker container. .. code-block:: console $ docker build -f Dockerfile.rocm -t vllm-rocm . $ docker run -it \ --network=host \ --group-add=video \ --ipc=host \ --cap-add=SYS_PTRACE \ --security-opt seccomp=unconfined \ --device /dev/kfd \ --device /dev/dri \ -v :/app/model \ vllm-rocm \ bash Alternatively, if you plan to install vLLM-ROCm on a local machine or start from a fresh docker image (e.g. rocm/pytorch), you can follow the steps below: 0. Install prerequisites (skip if you are already in an environment/docker with the following installed): - `ROCm `_ - `Pytorch `_ - `hipBLAS `_ 1. Install `flash attention for ROCm `_ Install ROCm's flash attention (v2.0.4) following the instructions from `ROCmSoftwarePlatform/flash-attention `_ .. note:: - If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly. - If you fail to install `ROCmSoftwarePlatform/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`. - ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention. - You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`) 2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention .. code-block:: console $ pip install xformers==0.0.23 --no-deps $ bash patch_xformers.rocm.sh 3. Build vLLM. .. code-block:: console $ cd vllm $ pip install -U -r requirements-rocm.txt $ python setup.py install # This may take 5-10 minutes.