# SPDX-License-Identifier: Apache-2.0 """Example for starting a Gradio OpenAI Chatbot Webserver Start vLLM API server: vllm serve meta-llama/Llama-2-7b-chat-hf Start Gradio OpenAI Chatbot Webserver: python examples/online_serving/gradio_openai_chatbot_webserver.py \ -m meta-llama/Llama-2-7b-chat-hf Note that `pip install --upgrade gradio` is needed to run this example. More details: https://github.com/gradio-app/gradio If your antivirus software blocks the download of frpc for gradio, you can install it manually by following these steps: 1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64 2. Rename the downloaded file to: frpc_linux_amd64_v0.3 3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc """ import argparse import gradio as gr from openai import OpenAI def format_history_to_openai(history): history_openai_format = [{ "role": "system", "content": "You are a great AI assistant." }] for human, assistant in history: history_openai_format.append({"role": "user", "content": human}) history_openai_format.append({ "role": "assistant", "content": assistant }) return history_openai_format def predict(message, history, client, model_name, temp, stop_token_ids): # Format history to OpenAI chat format history_openai_format = format_history_to_openai(history) history_openai_format.append({"role": "user", "content": message}) # Send request to OpenAI API (vLLM server) stream = client.chat.completions.create( model=model_name, messages=history_openai_format, temperature=temp, stream=True, extra_body={ 'repetition_penalty': 1, 'stop_token_ids': [int(id.strip()) for id in stop_token_ids.split(',')] if stop_token_ids else [] }) # Collect all chunks and concatenate them into a full message full_message = "" for chunk in stream: full_message += (chunk.choices[0].delta.content or "") # Return the full message as a single response return full_message def parse_args(): parser = argparse.ArgumentParser( description='Chatbot Interface with Customizable Parameters') parser.add_argument('--model-url', type=str, default='http://localhost:8000/v1', help='Model URL') parser.add_argument('-m', '--model', type=str, required=True, help='Model name for the chatbot') parser.add_argument('--temp', type=float, default=0.8, help='Temperature for text generation') parser.add_argument('--stop-token-ids', type=str, default='', help='Comma-separated stop token IDs') parser.add_argument("--host", type=str, default=None) parser.add_argument("--port", type=int, default=8001) return parser.parse_args() def build_gradio_interface(client, model_name, temp, stop_token_ids): def chat_predict(message, history): return predict(message, history, client, model_name, temp, stop_token_ids) return gr.ChatInterface(fn=chat_predict, title="Chatbot Interface", description="A simple chatbot powered by vLLM") def main(): # Parse the arguments args = parse_args() # Set OpenAI's API key and API base to use vLLM's API server openai_api_key = "EMPTY" openai_api_base = args.model_url # Create an OpenAI client client = OpenAI(api_key=openai_api_key, base_url=openai_api_base) # Define the Gradio chatbot interface using the predict function gradio_interface = build_gradio_interface(client, args.model, args.temp, args.stop_token_ids) gradio_interface.queue().launch(server_name=args.host, server_port=args.port, share=True) if __name__ == "__main__": main()