# imports for guided decoding tests import os import subprocess import sys import time import openai # use the official client for correctness check import pytest # using Ray for overall ease of process management, parallel requests, # and debugging. import ray import requests MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds # any model with a chat template should work here MODEL_NAME = "facebook/opt-125m" @ray.remote(num_gpus=1) class ServerRunner: def __init__(self, args): env = os.environ.copy() env["PYTHONUNBUFFERED"] = "1" self.proc = subprocess.Popen( ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args, env=env, stdout=sys.stdout, stderr=sys.stderr, ) self._wait_for_server() def ready(self): return True def _wait_for_server(self): # run health check start = time.time() while True: try: if requests.get( "http://localhost:8000/health").status_code == 200: break except Exception as err: if self.proc.poll() is not None: raise RuntimeError("Server exited unexpectedly.") from err time.sleep(0.5) if time.time() - start > MAX_SERVER_START_WAIT_S: raise RuntimeError( "Server failed to start in time.") from err def __del__(self): if hasattr(self, "proc"): self.proc.terminate() @pytest.fixture(scope="session") def server(): ray.init() server_runner = ServerRunner.remote([ "--model", MODEL_NAME, # use half precision for speed and memory savings in CI environment "--dtype", "float16", "--max-model-len", "2048", "--enforce-eager", "--engine-use-ray" ]) ray.get(server_runner.ready.remote()) yield server_runner ray.shutdown() @pytest.fixture(scope="session") def client(): client = openai.AsyncOpenAI( base_url="http://localhost:8000/v1", api_key="token-abc123", ) yield client @pytest.mark.asyncio async def test_check_models(server, client: openai.AsyncOpenAI): models = await client.models.list() models = models.data served_model = models[0] assert served_model.id == MODEL_NAME assert all(model.root == MODEL_NAME for model in models) @pytest.mark.asyncio async def test_single_completion(server, client: openai.AsyncOpenAI): completion = await client.completions.create(model=MODEL_NAME, prompt="Hello, my name is", max_tokens=5, temperature=0.0) assert completion.id is not None assert completion.choices is not None and len(completion.choices) == 1 assert completion.choices[0].text is not None and len( completion.choices[0].text) >= 5 assert completion.choices[0].finish_reason == "length" assert completion.usage == openai.types.CompletionUsage( completion_tokens=5, prompt_tokens=6, total_tokens=11) # test using token IDs completion = await client.completions.create( model=MODEL_NAME, prompt=[0, 0, 0, 0, 0], max_tokens=5, temperature=0.0, ) assert completion.choices[0].text is not None and len( completion.choices[0].text) >= 5 @pytest.mark.asyncio async def test_single_chat_session(server, client: openai.AsyncOpenAI): messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] # test single completion chat_completion = await client.chat.completions.create(model=MODEL_NAME, messages=messages, max_tokens=10, logprobs=True, top_logprobs=5) assert chat_completion.id is not None assert chat_completion.choices is not None and len( chat_completion.choices) == 1 assert chat_completion.choices[0].message is not None assert chat_completion.choices[0].logprobs is not None assert chat_completion.choices[0].logprobs.top_logprobs is not None assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 5 message = chat_completion.choices[0].message assert message.content is not None and len(message.content) >= 10 assert message.role == "assistant" messages.append({"role": "assistant", "content": message.content}) # test multi-turn dialogue messages.append({"role": "user", "content": "express your result in json"}) chat_completion = await client.chat.completions.create( model=MODEL_NAME, messages=messages, max_tokens=10, ) message = chat_completion.choices[0].message assert message.content is not None and len(message.content) >= 0