"""Test model set-up and weight loading for sparseml-quantized models. Run `pytest tests/quantization/test_compressed_tensors.py`. """ import pytest import torch from vllm import SamplingParams from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501 CompressedTensorsLinearMethod, CompressedTensorsW4A16, CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8DynamicToken, CompressedTensorsW8A8StaticTensor) @pytest.mark.parametrize("model_args", [ ("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", "tensor"), ("nm-testing/tinyllama-oneshot-w8-channel-a8-tensor", "channel"), ]) def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args): model_path, strategy = model_args with vllm_runner(model_path, enforce_eager=True) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 layer = model.model.layers[0] qkv_proj = layer.self_attn.qkv_proj o_proj = layer.self_attn.o_proj gate_up_proj = layer.mlp.gate_up_proj down_proj = layer.mlp.down_proj assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(o_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(gate_up_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(down_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8StaticTensor) assert qkv_proj.scheme.strategy == strategy assert qkv_proj.weight.dtype is torch.int8 assert o_proj.weight.dtype is torch.int8 assert gate_up_proj.weight.dtype is torch.int8 if qkv_proj.scheme.strategy == "tensor": assert qkv_proj.weight_scale.shard_splitter is not None assert qkv_proj.weight_scale.logical_widths is not None assert qkv_proj.input_scale.dtype is torch.float32 def test_compressed_tensors_no_enforce_eager(vllm_runner): model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change" with vllm_runner(model_path) as llm: sampling_params = SamplingParams() output = llm.generate("Hello world!", sampling_params=sampling_params) assert output @pytest.mark.parametrize("model_args", [ ("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2", "tensor"), ("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2", "channel"), ]) def test_compressed_tensors_w8a8_dynanmic_per_token(vllm_runner, model_args): model_path, strategy = model_args with vllm_runner(model_path, dtype=torch.float16) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 layer = model.model.layers[0] qkv_proj = layer.self_attn.qkv_proj assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8DynamicToken) assert qkv_proj.scheme.strategy == strategy assert qkv_proj.weight.dtype is torch.int8 @pytest.mark.parametrize("w4a16_args", [ ("nm-testing/tinyllama-oneshot-w4a16-channel-v2", "channel", None), ("nm-testing/tinyllama-oneshot-w4a16-group128-v2", "group", 128), ]) def test_compressed_tensors_w4a16(vllm_runner, w4a16_args): model, strategy, group = w4a16_args with vllm_runner(model) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 layer = model.model.layers[0] qkv_proj = layer.self_attn.qkv_proj assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16) assert qkv_proj.scheme.strategy == strategy assert qkv_proj.scheme.group_size == group assert qkv_proj.weight_packed.dtype is torch.int32 assert qkv_proj.weight_scale.dtype is torch.float16 assert qkv_proj.weight_packed.pack_factor == 8 def test_compressed_tensors_w4a16_marlin24(vllm_runner): model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t" with vllm_runner(model_path) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 layer = model.model.layers[0] qkv_proj = layer.self_attn.qkv_proj assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod) assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Sparse24) assert qkv_proj.weight_packed.dtype is torch.int32 sampling_params = SamplingParams() output = llm.generate("Hello world!", sampling_params=sampling_params) assert output