# SPDX-License-Identifier: Apache-2.0 import argparse import copy import itertools import pickle as pkl import time from collections.abc import Iterable from typing import Callable, Optional import torch import torch.utils.benchmark as TBenchmark from torch.utils.benchmark import Measurement as TMeasurement from utils import make_rand_tensors from weight_shapes import WEIGHT_SHAPES from vllm import _custom_ops as ops from vllm.model_executor.layers.quantization.utils.fp8_utils import ( w8a8_block_fp8_matmul) from vllm.utils import FlexibleArgumentParser DEFAULT_MODELS = list(WEIGHT_SHAPES.keys()) DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512] DEFAULT_TP_SIZES = [1] # bench def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs) -> TMeasurement: min_run_time = 1 globals = { "args": args, "kwargs": kwargs, "fn": fn, } return TBenchmark.Timer( stmt="fn(*args, **kwargs)", globals=globals, label=label, sub_label=sub_label, description=description, ).blocked_autorange(min_run_time=min_run_time) def bench_int8( dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str, bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]: """Benchmark INT8-based kernels.""" assert dtype == torch.int8 a, b = make_rand_tensors(torch.int8, m, n, k) scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) azp = torch.zeros((m, ), device="cuda", dtype=torch.int32) azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32) bench_fns = { "pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16) ), "pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)), "cutlass_i8_i8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16), "cutlass_i8_i8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16, bias), "cutlass_i8_i8_bf16_scaled_mm_azp": lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch. bfloat16, azp_adj), "cutlass_i8_i8_bf16_scaled_mm_azp_bias": lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch. bfloat16, azp_adj, None, bias), "cutlass_i8_i8_bf16_scaled_mm_azp_pt": lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch. bfloat16, azp_adj, azp), "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias": lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch. bfloat16, azp_adj, azp, bias), } timers = [] for name, fn in bench_fns.items(): # If bench_kernels is None, run all. Otherwise, run only exact matches. if bench_kernels is None or name in bench_kernels: print(f"Running {name}") timers.append(bench_fn(label, sub_label, name, fn)) return timers def bench_fp8( dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str, bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]: """Benchmark FP8-based kernels.""" assert dtype == torch.float8_e4m3fn a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k) a_cont = a.contiguous() scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) block_scale_a = torch.rand((m, k // 128), device="cuda", dtype=torch.float32) block_scale_b = torch.rand((k // 128, n // 128), device="cuda", dtype=torch.float32) block_scale_a_M_major = block_scale_a.t().contiguous().t() block_scale_b_K_major = block_scale_b.t().contiguous().t() bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) print(m, k, n) bench_fns = { "pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16) ), "pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)), "pytorch_fp8_fp8_fp16_scaled_mm": lambda: torch._scaled_mm( a, b, scale_a, scale_b, out_dtype=torch.float16), "pytorch_fp8_fp8_fp16_scaled_mm_fast_accum": lambda: torch._scaled_mm(a, b, scale_a, scale_b, out_dtype=torch.float16, use_fast_accum=True), "pytorch_fp8_fp8_bf16_scaled_mm": lambda: torch._scaled_mm( a, b, scale_a, scale_b, out_dtype=torch.bfloat16), "pytorch_fp8_fp8_bf16_scaled_mm_fast_accum": lambda: torch._scaled_mm(a, b, scale_a, scale_b, out_dtype=torch.bfloat16, use_fast_accum=True), "cutlass_fp8_fp8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16), "cutlass_fp8_fp8_fp16_scaled_mm": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16), "cutlass_fp8_fp8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16, bias), "cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)), "triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)), "cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major, block_scale_b_K_major, torch.float16), } timers = [] for name, fn in bench_fns.items(): # If bench_kernels is None, run all. Otherwise, run only exact matches. if bench_kernels is None or name in bench_kernels: print(f"Running {name}") timers.append(bench_fn(label, sub_label, name, fn)) return timers def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str, bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]: if dtype == torch.int8: return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels) if dtype == torch.float8_e4m3fn: return bench_fp8(dtype, m, k, n, label, sub_label, bench_kernels) raise ValueError("unsupported type") # runner def print_timers(timers: Iterable[TMeasurement]): compare = TBenchmark.Compare(timers) compare.print() def run(dtype: torch.dtype, MKNs: Iterable[tuple[int, int, int]], bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]: results = [] for m, k, n in MKNs: timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", f"MKN=({m}x{k}x{n})", bench_kernels=bench_kernels) print_timers(timers) results.extend(timers) return results def make_output(data: Iterable[TMeasurement], MKNs: Iterable[tuple[int, int, int]], base_description: str, timestamp=None): print(f"== All Results {base_description} ====") print_timers(data) # pickle all the results timestamp = int(time.time()) if timestamp is None else timestamp with open(f"{base_description}-{timestamp}.pkl", "wb") as f: pkl.dump(data, f) def run_square_bench(args): dim_sizes = list( range(args.dim_start, args.dim_end + 1, args.dim_increment)) MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes)) data = run(args.dtype, MKNs, bench_kernels=args.kernels) make_output(data, MKNs, f"square_bench-{args.dtype}") def run_range_bench(args): dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment)) n = len(dim_sizes) Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes MKNs = list(zip(Ms, Ks, Ns)) data = run(args.dtype, MKNs, bench_kernels=args.kernels) make_output(data, MKNs, f"range_bench-{args.dtype}") def run_model_bench(args): print("Benchmarking models:") for i, model in enumerate(args.models): print(f"[{i}] {model}") def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]: KNs = [] for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]): KN[tp_split_dim] = KN[tp_split_dim] // tp_size KNs.append(KN) return KNs model_bench_data = [] models_tps = list(itertools.product(args.models, args.tp_sizes)) for model, tp_size in models_tps: Ms = args.batch_sizes KNs = model_shapes(model, tp_size) MKNs = [] for m in Ms: for k, n in KNs: MKNs.append((m, k, n)) data = run(args.dtype, MKNs, bench_kernels=args.kernels) model_bench_data.append(data) # Print all results for data, model_tp in zip(model_bench_data, models_tps): model, tp_size = model_tp print(f"== Results {args.dtype} {model}-TP{tp_size} ====") print_timers(data) timestamp = int(time.time()) all_data = [] for d in model_bench_data: all_data.extend(d) # pickle all data with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f: pkl.dump(all_data, f) if __name__ == '__main__': def to_torch_dtype(dt): if dt == "int8": return torch.int8 if dt == "fp8": return torch.float8_e4m3fn raise ValueError("unsupported dtype") parser = FlexibleArgumentParser( description=""" Benchmark Cutlass GEMM. To run square GEMMs: python3 ./benchmarks/cutlass_benchmarks/w8a8_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64 To run constant N and K and sweep M: python3 ./benchmarks/cutlass_benchmarks/w8a8_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384 To run dimensions from a model: python3 ./benchmarks/cutlass_benchmarks/w8a8_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1 Output: - a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs. """, # noqa: E501 formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--dtype", type=to_torch_dtype, required=True, help="Available options are ['int8', 'fp8']") parser.add_argument( "--kernels", nargs="+", type=str, default=None, help= "Exact names of the kernels to benchmark. If not set, runs all kernels." ) subparsers = parser.add_subparsers(dest="cmd") square_parser = subparsers.add_parser("square_bench") square_parser.add_argument("--dim-start", type=int, required=True) square_parser.add_argument("--dim-end", type=int, required=True) square_parser.add_argument("--dim-increment", type=int, required=True) square_parser.set_defaults(func=run_square_bench) range_parser = subparsers.add_parser("range_bench") range_parser.add_argument("--dim-start", type=int, required=True) range_parser.add_argument("--dim-end", type=int, required=True) range_parser.add_argument("--dim-increment", type=int, required=True) range_parser.add_argument("--m-constant", type=int, default=None) range_parser.add_argument("--n-constant", type=int, default=None) range_parser.add_argument("--k-constant", type=int, default=None) range_parser.set_defaults(func=run_range_bench) model_parser = subparsers.add_parser("model_bench") model_parser.add_argument("--models", nargs="+", type=str, default=DEFAULT_MODELS, choices=WEIGHT_SHAPES.keys()) model_parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES) model_parser.add_argument("--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES) model_parser.set_defaults(func=run_model_bench) args = parser.parse_args() args.func(args)