from typing import List, Tuple import pytest from transformers import AutoTokenizer from vllm.config import VisionLanguageConfig from ..conftest import IMAGE_FILES pytestmark = pytest.mark.vlm _PREFACE = ( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's " "questions.") # The image token is placed before "user" on purpose so that the test can pass HF_IMAGE_PROMPTS = [ f"{_PREFACE} \nUSER: What's the content of the image? ASSISTANT:", f"{_PREFACE} \nUSER: What is the season? ASSISTANT:", ] assert len(HF_IMAGE_PROMPTS) == len(IMAGE_FILES) def iter_llava_next_configs(model_name: str): image_hw_to_feature_size = { (336, 336): 1176, (672, 672): 2928, (1344, 336): 1944, (336, 1344): 1890, } for (h, w), f in image_hw_to_feature_size.items(): for input_type, input_shape in [ (VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)), ]: yield (model_name, VisionLanguageConfig(image_input_type=input_type, image_feature_size=f, image_token_id=32000, image_input_shape=input_shape, image_processor=model_name, image_processor_revision=None)) model_and_vl_config = [ *iter_llava_next_configs("llava-hf/llava-v1.6-vicuna-7b-hf"), ] def vllm_to_hf_output(vllm_output: Tuple[List[int], str], vlm_config: VisionLanguageConfig, model_id: str): """Sanitize vllm output to be comparable with hf output. The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... It also reduces `output_str` from "bla" to "bla". """ input_ids, output_str = vllm_output image_token_id = vlm_config.image_token_id tokenizer = AutoTokenizer.from_pretrained(model_id) image_token_str = tokenizer.decode(image_token_id) hf_input_ids = [ input_id for idx, input_id in enumerate(input_ids) if input_id != image_token_id or input_ids[idx - 1] != image_token_id ] hf_output_str = output_str \ .replace(image_token_str * vlm_config.image_feature_size, " ") return hf_input_ids, hf_output_str @pytest.mark.xfail( reason="Inconsistent image processor being used due to lack " "of support for dynamic image token replacement") @pytest.mark.parametrize("model_and_config", model_and_vl_config) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) def test_models(hf_runner, vllm_runner, hf_images, vllm_images, model_and_config, dtype: str, max_tokens: int) -> None: """Inference result should be the same between hf and vllm. All the image fixtures for the test is under tests/images. For huggingface runner, we provide the PIL images as input. For vllm runner, we provide MultiModalData objects and corresponding vision language config as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ model_id, vlm_config = model_and_config with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model: hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS, max_tokens, images=hf_images) vllm_image_prompts = [ p.replace("", "" * vlm_config.image_feature_size) for p in HF_IMAGE_PROMPTS ] with vllm_runner( model_id, dtype=dtype, # should be greater than image_feature_size max_model_len=4096, enforce_eager=True, **vlm_config.as_cli_args_dict(), ) as vllm_model: vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts, max_tokens, images=vllm_images) for i in range(len(HF_IMAGE_PROMPTS)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = vllm_to_hf_output( vllm_outputs[i], vlm_config, model_id) assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")