vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |

*Latest News* 🔥 - [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing). - [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing). - [2024/01] Added ROCm 6.0 support to vLLM. - [2023/12] Added ROCm 5.7 support to vLLM. - [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing). - [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there. - [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv! - [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM. - [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command! - [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds. - [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai). --- ## About vLLM is a fast and easy-to-use library for LLM inference and serving. vLLM is fast with: - State-of-the-art serving throughput - Efficient management of attention key and value memory with **PagedAttention** - Continuous batching of incoming requests - Fast model execution with CUDA/HIP graph - Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache - Optimized CUDA kernels vLLM is flexible and easy to use with: - Seamless integration with popular Hugging Face models - High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more - Tensor parallelism support for distributed inference - Streaming outputs - OpenAI-compatible API server - Support NVIDIA GPUs and AMD GPUs - (Experimental) Prefix caching support - (Experimental) Multi-lora support vLLM seamlessly supports many Hugging Face models, including the following architectures: - Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.) - Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.) - BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.) - ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.) - Command-R (`CohereForAI/c4ai-command-r-v01`, etc.) - DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.) - DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.) - Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.) - Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.) - GPT-2 (`gpt2`, `gpt2-xl`, etc.) - GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.) - GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.) - GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.) - InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.) - InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.) - Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.) - LLaMA, Llama 2, and Meta Llama 3 (`meta-llama/Meta-Llama-3-8B-Instruct`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.) - MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.) - Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.) - Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.) - MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.) - OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.) - OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.) - Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.) - Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.) - Phi-3 (`microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, etc.) - Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.) - Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.) - Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.) - StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.) - Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.) - Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.) - Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.) Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source): ```bash pip install vllm ``` ## Getting Started Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started. - [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html) - [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html) - [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html) ## Contributing We welcome and value any contributions and collaborations. Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved. ## Citation If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180): ```bibtex @inproceedings{kwon2023efficient, title={Efficient Memory Management for Large Language Model Serving with PagedAttention}, author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica}, booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles}, year={2023} } ```