import pytest import torch from compressed_tensors.quantization import FP8_DTYPE import vllm.envs as envs from vllm.compilation.fusion import (FUSED_OPS, QUANT_OPS, FusedRMSQuantKey, FusionPass, QuantKey) from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe from vllm.compilation.reshapes import RedundantReshapesPass from vllm.config import CompilationConfig from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.quantization.utils.w8a8_utils import ( apply_fp8_linear) from .backend import TestBackend class TestModel(torch.nn.Module): def __init__(self, hidden_size: int, eps: float, static: bool, *args, **kwargs): super().__init__(*args, **kwargs) self.norm = [RMSNorm(hidden_size, eps) for _ in range(3)] self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(2)] if static: self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(2)] else: self.scale = [None for _ in range(2)] self.w = [ torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t() for _ in range(2) ] def forward(self, x): resid = torch.sqrt(x) y = self.norm[0](x) x2 = apply_fp8_linear(y, self.w[0], self.wscale[0], self.scale[0], use_per_token_if_dynamic=True) # make sure resid is used for replacement to work y2, resid = self.norm[1](x2, resid) x3 = apply_fp8_linear(y2, self.w[1], self.wscale[1], self.scale[1], use_per_token_if_dynamic=True) y3, resid = self.norm[2](x3, resid) # use resid here return y3 @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("hidden_size", [64, 3392, 4096]) @pytest.mark.parametrize("num_tokens", [7, 256, 533, 2048, 2049]) @pytest.mark.parametrize("eps", [1e-5, 1e-6]) @pytest.mark.parametrize("static", [True, False]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda", reason="Only test on CUDA") def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static): torch.set_default_device("cuda") torch.set_default_dtype(dtype) torch.manual_seed(1) # Reshape pass is needed for the fusion pass to work config = CompilationConfig.PassConfig(enable_fusion=True, enable_reshape=True) reshape_pass = RedundantReshapesPass(config) fusion_pass = FusionPass.instance(config) backend = TestBackend(reshape_pass, fusion_pass) model = TestModel(hidden_size, eps, static) # First dimension dynamic x = torch.rand(num_tokens, hidden_size) torch._dynamo.mark_dynamic(x, 0) result = model(x) model2 = torch.compile(model, backend=backend) result2 = model2(x) # Higher tol for dynamic, even higher for bfloat16 if static: ATOL, RTOL = (1e-3, 1e-3) elif dtype == torch.float16: ATOL, RTOL = (2e-3, 2e-3) else: ATOL, RTOL = (1e-2, 1e-2) torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL) # Check substitution worked pre_nodes = backend.graph_pre_pass.nodes post_nodes = backend.graph_post_pass.nodes # static is per-tensor, dynamic is per-token key = QuantKey(dtype=FP8_DTYPE, static=static, per_tensor=static, symmetric=True) rms_quant = FUSED_OPS[FusedRMSQuantKey(key, False)] add_rms_quant = FUSED_OPS[FusedRMSQuantKey(key, True)] fp8_quant = QUANT_OPS[key] # In pre-nodes, fp8 quant should be present and fused kernels should not assert find_auto_fn_maybe(pre_nodes, rms_quant) is None assert find_auto_fn_maybe(pre_nodes, add_rms_quant) is None find_auto_fn(pre_nodes, fp8_quant) # In post-nodes, fused kernels should be present and fp8 quant should not find_auto_fn(post_nodes, rms_quant) find_auto_fn(post_nodes, add_rms_quant) assert find_auto_fn_maybe(post_nodes, fp8_quant) is None