"""Compare the outputs of HF and vLLM when using greedy sampling. This test only tests small models. Big models such as 7B should be tested from test_big_models.py because it could use a larger instance to run tests. Run `pytest tests/models/test_cls_models.py`. """ import pytest import torch from transformers import AutoModelForSequenceClassification CLASSIFICATION_MODELS = ["jason9693/Qwen2.5-1.5B-apeach"] @pytest.mark.parametrize("model", CLASSIFICATION_MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_classification_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, ) -> None: with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.classify(example_prompts) with hf_runner(model, dtype=dtype, auto_cls=AutoModelForSequenceClassification) as hf_model: hf_outputs = hf_model.classify(example_prompts) print(hf_outputs, vllm_outputs) # check logits difference for hf_output, vllm_output in zip(hf_outputs, vllm_outputs): hf_output = torch.tensor(hf_output) vllm_output = torch.tensor(vllm_output) assert torch.allclose(hf_output, vllm_output, 1e-3) @pytest.mark.parametrize("model", CLASSIFICATION_MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_classification_model_print( vllm_runner, model: str, dtype: str, ) -> None: with vllm_runner(model, dtype=dtype) as vllm_model: # This test is for verifying whether the model's extra_repr # can be printed correctly. print(vllm_model.model.llm_engine.model_executor.driver_worker. model_runner.model)