"""Compare the outputs of HF and vLLM when using greedy sampling for Mamba. Run `pytest tests/models/test_mamba.py`. """ import pytest from transformers import AutoModelForCausalLM, AutoTokenizer from vllm.sampling_params import SamplingParams from vllm.worker.model_runner import _get_graph_batch_size from ...utils import check_outputs_equal MODELS = ["state-spaces/mamba-130m-hf", "tiiuae/falcon-mamba-tiny-dev"] # Use lower-level interfaces to create this greedy generator, as mamba will # choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used. def generate_greedy(model_name, example_prompts, max_tokens): # Create a text generation pipeline tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Generate texts from the prompts outputs = [] for prompt in example_prompts: # Tokenize the input prompt with truncation inputs = tokenizer(prompt, return_tensors="pt", truncation=True) input_ids = inputs["input_ids"].to(model.device) # Generate text using the model's generate method directly generated_ids = model.generate(input_ids, max_new_tokens=max_tokens) generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) outputs.append((generated_ids[0].tolist(), generated_text)) return outputs @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) def test_models( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: hf_outputs = generate_greedy(model, example_prompts, max_tokens) with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) for i in range(len(example_prompts)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = vllm_outputs[i] assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) def test_batching( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: # To pass the small model tests, we need full precision. for_loop_outputs = [] with vllm_runner(model, dtype=dtype) as vllm_model: for prompt in example_prompts: for_loop_outputs.append( vllm_model.generate_greedy([prompt], max_tokens)[0]) batched_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) check_outputs_equal( outputs_0_lst=for_loop_outputs, outputs_1_lst=batched_outputs, name_0="for_loop_vllm", name_1="batched_vllm", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [10]) def test_chunked_prefill_with_parallel_sampling(vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int) -> None: # Tests chunked prefill in conjunction with n>1. In this case, prefill is # populated with decoding tokens and we test that it doesn't fail. # This test might fail if cache is not allocated correctly for n > 1 # decoding steps inside a chunked prefill forward pass (where we have both # prefill and decode together ) sampling_params = SamplingParams(n=3, temperature=1, seed=0, max_tokens=max_tokens) with vllm_runner( model, dtype=dtype, enable_chunked_prefill=True, max_num_batched_tokens=30, max_num_seqs=10 # forces prefill chunks with decoding ) as vllm_model: vllm_model.generate(example_prompts, sampling_params) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [32]) @pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16]) def test_chunked_prefill(vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, chunked_prefill_token_size: int) -> None: """ Checks exact match decode between huggingface model and vllm runner with chunked prefill. """ max_num_seqs = chunked_prefill_token_size max_num_batched_tokens = chunked_prefill_token_size non_chunked = generate_greedy(model, example_prompts, max_tokens) with vllm_runner(model, dtype=dtype, enable_chunked_prefill=True, max_num_batched_tokens=max_num_batched_tokens, max_num_seqs=max_num_seqs) as vllm_model: chunked = vllm_model.generate_greedy(example_prompts, max_tokens=max_tokens) check_outputs_equal( outputs_0_lst=chunked, outputs_1_lst=non_chunked, name_0="chunked", name_1="non_chunked", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [15]) def test_parallel_sampling( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: with vllm_runner(model, dtype=dtype) as vllm_model: for_loop_outputs = [] for _ in range(10): for_loop_outputs.append( # using example_prompts index 1 instead of 0 since with 0 the # logprobs get really close and the test doesn't pass vllm_model.generate_greedy([example_prompts[1]], max_tokens) [0]) sampling_params = SamplingParams(n=10, temperature=0.001, seed=0, max_tokens=max_tokens) n_lt_1_outputs = vllm_model.generate([example_prompts[1]], sampling_params) token_ids, texts = n_lt_1_outputs[0] n_lt_1_outputs = [(token_id, text) for token_id, text in zip(token_ids, texts)] check_outputs_equal( outputs_0_lst=n_lt_1_outputs, outputs_1_lst=for_loop_outputs, name_0="vllm_n_lt_1_outputs", name_1="vllm", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["bfloat16"]) @pytest.mark.parametrize("max_tokens", [20]) def test_mamba_cache_cg_padding( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: # This test is for verifying that mamba cache is padded to CG captured # batch size. If it's not, a torch RuntimeError will be raised because # tensor dimensions aren't compatible while len(example_prompts) == _get_graph_batch_size(len(example_prompts)): example_prompts.append(example_prompts[0]) try: with vllm_runner(model, dtype=dtype) as vllm_model: vllm_model.generate_greedy(example_prompts, max_tokens) except RuntimeError: pytest.fail( "Couldn't run batch size which is not equal to a Cuda Graph " "captured batch size. " "Could be related to mamba cache not padded correctly") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [20]) def test_models_preemption_recompute( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: # Tests that outputs are identical with and w/o preemtions (recompute) assert dtype == "float" with vllm_runner(model, dtype=dtype) as vllm_model: vllm_model.model.llm_engine.scheduler[ 0].ENABLE_ARTIFICIAL_PREEMPT = True preempt_vllm_outputs = vllm_model.generate_greedy( example_prompts, max_tokens) vllm_model.model.llm_engine.scheduler[ 0].ENABLE_ARTIFICIAL_PREEMPT = False vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) check_outputs_equal( outputs_0_lst=preempt_vllm_outputs, outputs_1_lst=vllm_outputs, name_0="vllm_preepmtions", name_1="vllm", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks( vllm_runner, model: str, dtype: str, example_prompts, ) -> None: # This test is for verifying that the Mamba inner state management doesn't # collapse in case where the number of incoming requests and # finished_requests_ids is larger than the maximum Mamba block capacity. # This could generally happen due to the fact that Mamba does support # statelessness mechanism where it can cleanup new incoming requests in # a single step. try: with vllm_runner(model, dtype=dtype, max_num_seqs=10) as vllm_model: vllm_model.generate_greedy([example_prompts[0]] * 100, 10) except ValueError: pytest.fail("Mamba inner state wasn't cleaned up properly between" "steps finished requests registered unnecessarily ") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_state_cleanup( vllm_runner, model: str, dtype: str, example_prompts, ) -> None: # This test is for verifying that the Mamba state is cleaned up between # steps, If its not cleaned, an error would be expected. try: with vllm_runner(model, dtype=dtype) as vllm_model: for _ in range(10): vllm_model.generate_greedy([example_prompts[0]] * 100, 1) except ValueError: pytest.fail("Mamba inner state wasn't cleaned up between states, " "could be related to finished_requests_ids") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_model_print( vllm_runner, model: str, dtype: str, ) -> None: with vllm_runner(model, dtype=dtype) as vllm_model: # This test is for verifying whether the model's extra_repr # can be printed correctly. print(vllm_model.model.llm_engine.model_executor.driver_worker. model_runner.model)