from typing import Dict, List, Union from cacheflow.master.scheduler import Scheduler from cacheflow.worker.worker import Worker class Controller: def __init__( self, node_id: int, num_workers: int, model_name: str, block_size: int, num_gpu_blocks: int, num_cpu_blocks: int, dtype: str = 'half', ) -> None: self.node_id = node_id self.num_workers = num_workers self.model_name = model_name self.block_size = block_size self.num_gpu_blocks = num_gpu_blocks self.num_cpu_blocks = num_cpu_blocks # Which pipeline stage is this node assigned to? self.is_first_stage = node_id == 0 self.is_last_stage = False self.workers: List[Worker] = [] for i in range(num_workers): worker = Worker( worker_id=node_id + i, gpu_id=i, model_name=model_name, block_size=block_size, num_gpu_blocks=num_gpu_blocks, num_cpu_blocks=num_cpu_blocks, dtype=dtype, ) self.workers.append(worker) def set_next( self, next_node: Union['Controller', 'Scheduler'], ) -> None: self.next_node = next_node self.is_last_stage = isinstance(next_node, Scheduler) def execute_stage( self, prompt_tokens: Dict[int, List[int]], generation_tokens: Dict[int, int], context_lens: Dict[int, int], block_tables: Dict[int, List[int]], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, int], ) -> None: # FIXME: Support tensor parallelism. assert len(self.workers) == 1 worker = self.workers[0] output = worker.execute_stage( prompt_tokens, generation_tokens, context_lens, block_tables, blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy, ) if self.is_last_stage: self.next_node.post_step(output) else: # TODO: Support pipeline parallelism. assert False