""" This example shows how to use vLLM for running offline inference with multi-image input on vision language models, using the chat template defined by the model. """ from argparse import Namespace from typing import List, NamedTuple, Optional from PIL.Image import Image from transformers import AutoProcessor, AutoTokenizer from vllm import LLM, SamplingParams from vllm.multimodal.utils import fetch_image from vllm.utils import FlexibleArgumentParser QUESTION = "What is the content of each image?" IMAGE_URLS = [ "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg", "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg", ] class ModelRequestData(NamedTuple): llm: LLM prompt: str stop_token_ids: Optional[List[str]] image_data: List[Image] chat_template: Optional[str] def load_qwenvl_chat(question: str, image_urls: List[str]) -> ModelRequestData: model_name = "Qwen/Qwen-VL-Chat" llm = LLM( model=model_name, trust_remote_code=True, max_num_seqs=5, limit_mm_per_prompt={"image": len(image_urls)}, ) placeholders = "".join(f"Picture {i}: \n" for i, _ in enumerate(image_urls, start=1)) # This model does not have a chat_template attribute on its tokenizer, # so we need to explicitly pass it. We use ChatML since it's used in the # generation utils of the model: # https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" # noqa: E501 messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, chat_template=chat_template) stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] return ModelRequestData( llm=llm, prompt=prompt, stop_token_ids=stop_token_ids, image_data=[fetch_image(url) for url in image_urls], chat_template=chat_template, ) def load_phi3v(question: str, image_urls: List[str]) -> ModelRequestData: # num_crops is an override kwarg to the multimodal image processor; # For some models, e.g., Phi-3.5-vision-instruct, it is recommended # to use 16 for single frame scenarios, and 4 for multi-frame. # # Generally speaking, a larger value for num_crops results in more # tokens per image instance, because it may scale the image more in # the image preprocessing. Some references in the model docs and the # formula for image tokens after the preprocessing # transform can be found below. # # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194 llm = LLM( model="microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, max_model_len=4096, limit_mm_per_prompt={"image": len(image_urls)}, mm_processor_kwargs={"num_crops": 4}, ) placeholders = "\n".join(f"<|image_{i}|>" for i, _ in enumerate(image_urls, start=1)) prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n" stop_token_ids = None return ModelRequestData( llm=llm, prompt=prompt, stop_token_ids=stop_token_ids, image_data=[fetch_image(url) for url in image_urls], chat_template=None, ) def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData: model_name = "OpenGVLab/InternVL2-2B" llm = LLM( model=model_name, trust_remote_code=True, max_num_seqs=5, max_model_len=4096, limit_mm_per_prompt={"image": len(image_urls)}, ) placeholders = "\n".join(f"Image-{i}: \n" for i, _ in enumerate(image_urls, start=1)) messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}] tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Stop tokens for InternVL # models variants may have different stop tokens # please refer to the model card for the correct "stop words": # https://huggingface.co/OpenGVLab/InternVL2-2B#service stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] return ModelRequestData( llm=llm, prompt=prompt, stop_token_ids=stop_token_ids, image_data=[fetch_image(url) for url in image_urls], chat_template=None, ) def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData: try: from qwen_vl_utils import process_vision_info except ModuleNotFoundError: print('WARNING: `qwen-vl-utils` not installed, input images will not ' 'be automatically resized. You can enable this functionality by ' '`pip install qwen-vl-utils`.') process_vision_info = None model_name = "Qwen/Qwen2-VL-7B-Instruct" llm = LLM( model=model_name, max_num_seqs=5, max_model_len=32768 if process_vision_info is None else 4096, limit_mm_per_prompt={"image": len(image_urls)}, ) placeholders = [{"type": "image", "image": url} for url in image_urls] messages = [{ "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": [ *placeholders, { "type": "text", "text": question }, ], }] processor = AutoProcessor.from_pretrained(model_name) prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) stop_token_ids = None if process_vision_info is None: image_data = [fetch_image(url) for url in image_urls] else: image_data, _ = process_vision_info(messages) return ModelRequestData( llm=llm, prompt=prompt, stop_token_ids=stop_token_ids, image_data=image_data, chat_template=None, ) model_example_map = { "phi3_v": load_phi3v, "internvl_chat": load_internvl, "qwen2_vl": load_qwen2_vl, "qwen_vl_chat": load_qwenvl_chat, } def run_generate(model, question: str, image_urls: List[str]): req_data = model_example_map[model](question, image_urls) sampling_params = SamplingParams(temperature=0.0, max_tokens=128, stop_token_ids=req_data.stop_token_ids) outputs = req_data.llm.generate( { "prompt": req_data.prompt, "multi_modal_data": { "image": req_data.image_data }, }, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) def run_chat(model: str, question: str, image_urls: List[str]): req_data = model_example_map[model](question, image_urls) sampling_params = SamplingParams(temperature=0.0, max_tokens=128, stop_token_ids=req_data.stop_token_ids) outputs = req_data.llm.chat( [{ "role": "user", "content": [ { "type": "text", "text": question, }, *({ "type": "image_url", "image_url": { "url": image_url }, } for image_url in image_urls), ], }], sampling_params=sampling_params, chat_template=req_data.chat_template, ) for o in outputs: generated_text = o.outputs[0].text print(generated_text) def main(args: Namespace): model = args.model_type method = args.method if method == "generate": run_generate(model, QUESTION, IMAGE_URLS) elif method == "chat": run_chat(model, QUESTION, IMAGE_URLS) else: raise ValueError(f"Invalid method: {method}") if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using vLLM for offline inference with ' 'vision language models that support multi-image input') parser.add_argument('--model-type', '-m', type=str, default="phi3_v", choices=model_example_map.keys(), help='Huggingface "model_type".') parser.add_argument("--method", type=str, default="generate", choices=["generate", "chat"], help="The method to run in `vllm.LLM`.") args = parser.parse_args() main(args)