.. _lora: Using LoRA adapters =================== This document shows you how to use `LoRA adapters `_ with vLLM on top of a base model. Adapters can be efficiently served on a per request basis with minimal overhead. First we download the adapter(s) and save them locally with .. code-block:: python from huggingface_hub import snapshot_download sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test") Then we instantiate the base model and pass in the ``enable_lora=True`` flag: .. code-block:: python from vllm import LLM, SamplingParams from vllm.lora.request import LoRARequest llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True) We can now submit the prompts and call ``llm.generate`` with the ``lora_request`` parameter. The first parameter of ``LoRARequest`` is a human identifiable name, the second parameter is a globally unique ID for the adapter and the third parameter is the path to the LoRA adapter. .. code-block:: python sampling_params = SamplingParams( temperature=0, max_tokens=256, stop=["[/assistant]"] ) prompts = [ "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", ] outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest("sql_adapter", 1, sql_lora_path) ) Check out `examples/multilora_inference.py `_ for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.