# Adapted from: https://github.com/deepseek-ai/FlashMLA/blob/main/tests/test_flash_mla.py # SPDX-License-Identifier: Apache-2.0 import math import random import pytest import torch import triton from vllm.attention.ops.flashmla import (flash_mla_with_kvcache, get_mla_metadata, is_flashmla_supported) def cal_diff(x: torch.Tensor, y: torch.Tensor, name: str) -> None: x, y = x.double(), y.double() cos_diff = 1 - 2 * (x * y).sum().item() / max( (x * x + y * y).sum().item(), 1e-12) assert cos_diff < 1e-5 FLASH_MLA_UNSUPPORTED_REASON = is_flashmla_supported()[1] \ if not is_flashmla_supported()[0] else "FlashMLA is supported" @pytest.mark.skipif(not is_flashmla_supported()[0], reason=FLASH_MLA_UNSUPPORTED_REASON) @pytest.mark.parametrize("b", [128]) @pytest.mark.parametrize("s_q", [1, 2]) @pytest.mark.parametrize("mean_sk", [4096, 8192]) @pytest.mark.parametrize("h_q", [16, 32, 64, 128]) @pytest.mark.parametrize("h_kv", [1]) @pytest.mark.parametrize("d", [576]) @pytest.mark.parametrize("dv", [512]) @pytest.mark.parametrize("block_size", [64]) @pytest.mark.parametrize("causal", [True]) @pytest.mark.parametrize("varlen", [False, True]) @torch.inference_mode() def test_flash_mla(b, s_q, mean_sk, h_q, h_kv, d, dv, block_size, causal, varlen): # TODO: parametrize using pytest dtype = torch.bfloat16 device = torch.device("cuda:0") torch.set_default_dtype(dtype) torch.set_default_device(device) torch.cuda.set_device(device) torch.manual_seed(0) random.seed(0) print(f"{b=}, {s_q=}, {mean_sk=}, {h_q=}, {h_kv=}, " f"{d=}, {dv=}, {causal=}, {varlen=}") cache_seqlens = torch.full((b, ), mean_sk, dtype=torch.int32) if varlen: for i in range(b): cache_seqlens[i] = max(random.normalvariate(mean_sk, mean_sk / 2), s_q) total_seqlens = cache_seqlens.sum().item() max_seqlen = cache_seqlens.max().item() max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256 q = torch.randn(b, s_q, h_q, d) block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view( b, max_seqlen_pad // block_size) blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d) for i in range(b): blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan") blocked_v = blocked_k[..., :dv] tile_scheduler_metadata, num_splits = get_mla_metadata( cache_seqlens, s_q * h_q // h_kv, h_kv) def flash_mla(): return flash_mla_with_kvcache( q, blocked_k, block_table, cache_seqlens, dv, tile_scheduler_metadata, num_splits, causal=causal, ) def scaled_dot_product_attention(query, key, value, is_causal=False): query = query.float() key = key.float() value = value.float() key = key.repeat_interleave(h_q // h_kv, dim=0) value = value.repeat_interleave(h_q // h_kv, dim=0) attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1)) if is_causal: s_q = query.shape[-2] s_k = key.shape[-2] attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype) temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(query.dtype) attn_weight += attn_bias lse = attn_weight.logsumexp(dim=-1) attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32) return attn_weight @ value, lse def ref_mla(): out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32) lse = torch.empty(b, h_q, s_q, dtype=torch.float32) for i in range(b): begin = i * max_seqlen_pad end = begin + cache_seqlens[i] ref_O, LSE = scaled_dot_product_attention( q[i].transpose(0, 1), blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1), blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1), is_causal=causal, ) out[i] = ref_O.transpose(0, 1) lse[i] = LSE return out, lse out_flash, lse_flash = flash_mla() out_torch, lse_torch = ref_mla() cal_diff(out_flash, out_torch, "out") cal_diff(lse_flash, lse_torch, "lse") t = triton.testing.do_bench(flash_mla) FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2 bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (torch.finfo(dtype).bits // 8) print(f"{t:.3f} ms, {FLOPS / 10 ** 9 / t:.0f} " f"TFLOPS, {bytes / 10 ** 6 / t:.0f} GB/s")