# SPDX-License-Identifier: Apache-2.0 import pytest import torch from vllm.attention.ops.triton_decode_attention import decode_attention_fwd def cdiv(a, b): return (a + b - 1) // b @pytest.mark.parametrize("B", [3, 5]) @pytest.mark.parametrize("L", [1027, 1025]) @pytest.mark.parametrize("H_Q", [32]) @pytest.mark.parametrize("H_KV", [32, 8]) @pytest.mark.parametrize("D_QK", [128, 192, 576]) @pytest.mark.parametrize("D_V", [128, 512]) @pytest.mark.parametrize("CACHE_SIZE", [16384]) @pytest.mark.parametrize("PAGE_SIZE", [1, 16]) def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE): assert CACHE_SIZE % PAGE_SIZE == 0 dtype = torch.bfloat16 seq_len = L # This represents the number of tokens already in the sequence sm_scale = 1.0 / (D_QK**0.5) num_kv_splits = 8 num_pages_per_batch = cdiv(seq_len, PAGE_SIZE) req_to_page = torch.randint(0, CACHE_SIZE // PAGE_SIZE, (B, num_pages_per_batch, 1), device="cuda") req_to_token = req_to_page * PAGE_SIZE req_to_token = req_to_token.expand(B, num_pages_per_batch, PAGE_SIZE) req_to_token = req_to_token + torch.arange(PAGE_SIZE, device="cuda").view( 1, 1, -1) req_to_token = req_to_token.view(B, -1) req_to_token = req_to_token[:, :seq_len].contiguous() # q represents the new token being generated, one per batch q = torch.randn(B, H_Q, D_QK, dtype=dtype, device="cuda") # k_buffer and v_buffer represent all previous tokens # Page size is 1. k_buffer = torch.randn(CACHE_SIZE, H_KV, D_QK, dtype=dtype, device="cuda") v_buffer = torch.randn(CACHE_SIZE, H_KV, D_V, dtype=dtype, device="cuda") # o will have the same shape as q o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda") b_seq_len = torch.full((B, ), seq_len, device="cuda") attn_logits = torch.empty( (B, H_Q, num_kv_splits, D_V + 1), dtype=torch.float32, device="cuda", ) # Call the original implementation. decode_attention_fwd( q, k_buffer, v_buffer, o, req_to_token, b_seq_len, attn_logits, num_kv_splits, sm_scale, ) # Page size can be larger than 1. k_buffer = k_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_QK) v_buffer = v_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_V) o1 = torch.zeros_like(o) decode_attention_fwd( q, k_buffer, v_buffer, o1, req_to_page, b_seq_len, attn_logits, num_kv_splits, sm_scale, PAGE_SIZE, ) assert torch.allclose(o, o1)