# SPDX-License-Identifier: Apache-2.0 from unittest.mock import patch import pytest from transformers import PretrainedConfig from vllm import LLM from .registry import HF_EXAMPLE_MODELS @pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs()) def test_can_initialize(model_arch): model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch) model_info.check_available_online(on_fail="skip") model_info.check_transformers_version(on_fail="skip") # Avoid OOM def hf_overrides(hf_config: PretrainedConfig) -> PretrainedConfig: if hf_config.model_type == "deepseek_vl_v2": hf_config.update({"architectures": ["DeepseekVLV2ForCausalLM"]}) if hasattr(hf_config, "text_config"): text_config: PretrainedConfig = hf_config.text_config else: text_config = hf_config text_config.update({ "num_layers": 1, "num_hidden_layers": 1, "num_experts": 2, "num_experts_per_tok": 2, "num_local_experts": 2, }) return hf_config # Avoid calling model.forward() def _initialize_kv_caches(self) -> None: self.cache_config.num_gpu_blocks = 0 self.cache_config.num_cpu_blocks = 0 with patch.object(LLM.get_engine_class(), "_initialize_kv_caches", _initialize_kv_caches): LLM( model_info.default, tokenizer=model_info.tokenizer, tokenizer_mode=model_info.tokenizer_mode, speculative_model=model_info.speculative_model, num_speculative_tokens=1 if model_info.speculative_model else None, trust_remote_code=model_info.trust_remote_code, load_format="dummy", hf_overrides=hf_overrides, )