from functools import partial import numpy as np import pytest from PIL import Image from vllm.config import ModelConfig from vllm.inputs import InputProcessingContext from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.processing import ProcessingCache from vllm.multimodal.utils import cached_get_tokenizer from ....multimodal.utils import random_audio, random_image, random_video def _test_processing_correctness( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): if model_id == "TIGER-Lab/Mantis-8B-siglip-llama3": hf_overrides = {"architectures": ["MantisForConditionalGeneration"]} elif model_id == "deepseek-ai/deepseek-vl2-tiny": hf_overrides = {"architectures": ["DeepseekVLV2ForCausalLM"]} else: hf_overrides = {} limit_mm_per_prompt = { modality: 3 if supports_multi else 1 for modality, supports_multi in modalities.items() } model_config = ModelConfig( model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=True, seed=0, dtype="float16", revision=None, hf_overrides=hf_overrides, limit_mm_per_prompt=limit_mm_per_prompt, ) model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config) factories = MULTIMODAL_REGISTRY._processor_factories[model_cls] ctx = InputProcessingContext( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) # Ensure that it can fit all of the data cache = ProcessingCache(capacity=1 << 30) baseline_processor = factories.build_processor(ctx, cache=None) cached_processor = factories.build_processor(ctx, cache=cache) dummy_inputs = baseline_processor.dummy_inputs tokenizer = baseline_processor.info.get_tokenizer() rng = np.random.RandomState(0) input_to_hit = { "image": Image.new("RGB", size=(128, 128)), "video": np.zeros((4, 128, 128, 3), dtype=np.uint8), "audio": (np.zeros((512, )), 16000), } input_factory = { "image": partial(random_image, rng, min_wh=128, max_wh=256), "video": partial(random_video, rng, min_frames=2, max_frames=8, min_wh=128, max_wh=256), "audio": partial(random_audio, rng, min_len=512, max_len=1024, sr=16000), } for batch_idx in range(num_batches): mm_data = { k: [(input_to_hit[k] if rng.rand() < hit_rate else input_factory[k]()) for _ in range(rng.randint(limit_mm_per_prompt[k]))] for k in modalities } mm_counts = {k: len(vs) for k, vs in mm_data.items()} prompt = dummy_inputs.get_dummy_processor_inputs( model_config.max_model_len, mm_counts, ).prompt_text # Drop unnecessary keys and test single -> multi conversion if rng.rand() < simplify_rate: for k in list(mm_data.keys()): if not mm_data[k]: del mm_data[k] elif len(mm_data[k]) == 1: mm_data[k] = mm_data[k][0] baseline_result = baseline_processor.apply( prompt, mm_data=mm_data, hf_processor_mm_kwargs={}, ) cached_result = cached_processor.apply( prompt, mm_data=mm_data, hf_processor_mm_kwargs={}, ) assert baseline_result == cached_result, ( f"Failed ({batch_idx=}, {prompt=}, {mm_data=})") baseline_tokenized_result = baseline_processor.apply( tokenizer.encode(prompt), mm_data=mm_data, hf_processor_mm_kwargs={}, ) assert baseline_result == baseline_tokenized_result, ( f"Failed ({batch_idx=}, {prompt=}, {mm_data=})") cached_tokenized_result = cached_processor.apply( tokenizer.encode(prompt), mm_data=mm_data, hf_processor_mm_kwargs={}, ) assert cached_result == cached_tokenized_result, ( f"Failed ({batch_idx=}, {prompt=}, {mm_data=})") # yapf: disable # True if the model supports multiple data items of the modality per request @pytest.mark.parametrize(("model_id", "modalities"), [ ("rhymes-ai/Aria", {"image": True}), ("Salesforce/blip2-opt-2.7b", {"image": False}), ("facebook/chameleon-7b", {"image": False}), ("deepseek-ai/deepseek-vl2-tiny", {"image": True}), ("adept/fuyu-8b", {"image": False}), ("llava-hf/llava-1.5-7b-hf", {"image": True}), ("llava-hf/llava-v1.6-mistral-7b-hf", {"image": True}), ("llava-hf/LLaVA-NeXT-Video-7B-hf", {"video": False}), ("llava-hf/llava-onevision-qwen2-0.5b-ov-hf", {"image": True, "video": True}), # noqa: E501 ("TIGER-Lab/Mantis-8B-siglip-llama3", {"image": True}), ("mistral-community/pixtral-12b", {"image": True}), ("Qwen/Qwen2-VL-2B-Instruct", {"image": True, "video": True}), ("Qwen/Qwen2-Audio-7B-Instruct", {"audio": True}), ("fixie-ai/ultravox-v0_3", {"audio": True}), ]) @pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0]) @pytest.mark.parametrize("num_batches", [32]) @pytest.mark.parametrize("simplify_rate", [1.0]) # yapf: enable def test_processing_correctness( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): _test_processing_correctness( model_id, modalities, hit_rate=hit_rate, num_batches=num_batches, simplify_rate=simplify_rate, ) # yapf: disable @pytest.mark.parametrize(("model_id", "modalities"), [ ("microsoft/Phi-3-vision-128k-instruct", {"image": True}), ]) @pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0]) @pytest.mark.parametrize("num_batches", [32]) @pytest.mark.parametrize("simplify_rate", [1.0]) # yapf: enable def test_processing_correctness_phi3v( model_id: str, modalities: dict[str, bool], hit_rate: float, num_batches: int, simplify_rate: float, ): # HACK - this is an attempted workaround for the following bug # https://github.com/huggingface/transformers/issues/34307 from transformers import AutoImageProcessor # noqa: F401 from transformers import AutoProcessor # noqa: F401 AutoImageProcessor.from_pretrained(model_id, trust_remote_code=True) _test_processing_correctness( model_id, modalities, hit_rate=hit_rate, num_batches=num_batches, simplify_rate=simplify_rate, )