(auto-awq)= # AutoAWQ To create a new 4-bit quantized model, you can leverage [AutoAWQ](https://github.com/casper-hansen/AutoAWQ). Quantizing reduces the model's precision from FP16 to INT4 which effectively reduces the file size by ~70%. The main benefits are lower latency and memory usage. You can quantize your own models by installing AutoAWQ or picking one of the [400+ models on Huggingface](https://huggingface.co/models?sort=trending&search=awq). ```console pip install autoawq ``` After installing AutoAWQ, you are ready to quantize a model. Here is an example of how to quantize `mistralai/Mistral-7B-Instruct-v0.2`: ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_path = 'mistralai/Mistral-7B-Instruct-v0.2' quant_path = 'mistral-instruct-v0.2-awq' quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # Load model model = AutoAWQForCausalLM.from_pretrained( model_path, **{"low_cpu_mem_usage": True, "use_cache": False} ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Quantize model.quantize(tokenizer, quant_config=quant_config) # Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) print(f'Model is quantized and saved at "{quant_path}"') ``` To run an AWQ model with vLLM, you can use [TheBloke/Llama-2-7b-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-AWQ) with the following command: ```console python examples/offline_inference/llm_engine_example.py --model TheBloke/Llama-2-7b-Chat-AWQ --quantization awq ``` AWQ models are also supported directly through the LLM entrypoint: ```python from vllm import LLM, SamplingParams # Sample prompts. prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create a sampling params object. sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # Create an LLM. llm = LLM(model="TheBloke/Llama-2-7b-Chat-AWQ", quantization="AWQ") # Generate texts from the prompts. The output is a list of RequestOutput objects # that contain the prompt, generated text, and other information. outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ```