# SPDX-License-Identifier: Apache-2.0 import random import pytest from vllm import LLM, envs from vllm.platforms import current_platform from vllm.sampling_params import SamplingParams if not envs.VLLM_USE_V1: pytest.skip( "Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.", allow_module_level=True, ) @pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"]) @pytest.mark.skipif(not current_platform.is_tpu(), reason="This test needs a TPU") def test_sampler_different(model_name: str): """ Test significantly different sampling params to assert the model produces different results. """ llm = LLM(model_name, enforce_eager=False, max_num_seqs=1, max_model_len=512, max_num_batched_tokens=512) prompts = [ "Write a short story about a robot that dreams for the first time." ] sampling_params = SamplingParams(temperature=0.9, min_p=0.2, max_tokens=64) output = llm.generate(prompts, sampling_params) sampling_params = SamplingParams(temperature=0.1, min_p=0.8, max_tokens=64) output2 = llm.generate(prompts, sampling_params) assert output[0].outputs[0].text != output2[0].outputs[0].text with pytest.raises(ValueError): # Unsupported `seed` param. sampling_params = SamplingParams(temperature=0.3, seed=42) output2 = llm.generate(prompts, sampling_params) # Batch-case with TopK for B in [4, 16]: p = prompts * B sampling_params = [ SamplingParams( temperature=0.1, min_p=0.8, max_tokens=64, # Vary number of ks top_k=random.randint(4, 12)) for _ in range(B) ] # Make sure first two reqs have the same K sampling_params[0] = sampling_params[1] output = llm.generate(p, sampling_params) assert output[0].outputs[0].text == output[1].outputs[0].text