# SPDX-License-Identifier: Apache-2.0 """Compare the outputs of HF and vLLM when using greedy sampling. Run `pytest tests/models/test_models.py`. """ import pytest import torch from vllm.platforms import current_platform from ...utils import check_logprobs_close # These have unsupported head_dim for FA. We do not # not have a clean way to fall back, so we fail with # a clear msg when it happens. # https://github.com/vllm-project/vllm/issues/14524 REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"] # This list contains the model that are using AITER kernel. # Skip model that are not using AITER tests. # When more AITER kernels are added, this list will not be # needed as all the models will be calling AITER kernels # in parts of the operators AITER_MODEL_LIST = [ "meta-llama/Llama-3.2-1B-Instruct", "openbmb/MiniCPM3-4B", "Qwen/Qwen-7B", "Qwen/Qwen2.5-0.5B-Instruct", "ehristoforu/Falcon3-MoE-2x7B-Insruct", ] # @maybe_test_rocm_aiter @pytest.mark.parametrize( "model", [ pytest.param( "bigscience/bloom-560m", # bloom - testing alibi slopes marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "openai-community/gpt2", # gpt2 marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param("Milos/slovak-gpt-j-405M"), # gptj pytest.param("bigcode/tiny_starcoder_py"), # gpt_bigcode pytest.param("EleutherAI/pythia-70m"), # gpt_neox pytest.param( "google/gemma-1.1-2b-it", # gemma marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "THUDM/chatglm3-6b", # chatglm (text-only) ), pytest.param( "meta-llama/Llama-3.2-1B-Instruct", # llama marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "openbmb/MiniCPM3-4B", # fused_moe not supported on CPU marks=[pytest.mark.core_model], ), pytest.param( "facebook/opt-125m", # opt marks=[pytest.mark.core_model, pytest.mark.cpu_model], ), pytest.param( "microsoft/phi-2", # phi marks=[pytest.mark.core_model], ), pytest.param( "Qwen/Qwen-7B", # qwen (text-only) ), pytest.param( "Qwen/Qwen2.5-0.5B-Instruct", # qwen2 marks=[pytest.mark.core_model], ), pytest.param("stabilityai/stablelm-3b-4e1t"), # stablelm pytest.param("bigcode/starcoder2-3b"), # starcoder2 pytest.param( "ehristoforu/Falcon3-MoE-2x7B-Insruct", # mixtral marks=[pytest.mark.cpu_model], ) ]) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [32]) @pytest.mark.parametrize("num_logprobs", [5]) @pytest.mark.parametrize( "use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False]) def test_models(hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, num_logprobs: int, use_rocm_aiter: bool, monkeypatch) -> None: if model in REQUIRES_V0: monkeypatch.setenv("VLLM_USE_V1", "0") if use_rocm_aiter and (model in AITER_MODEL_LIST): monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1") elif use_rocm_aiter and model not in AITER_MODEL_LIST: # Skip model that are not using AITER tests. # When more AITER kernels are added, this list will not be # needed as all the models will be calling AITER kernels # in parts of the operators pytest.skip(f"Skipping '{model}' model test with AITER kernel.") with hf_runner(model, dtype=dtype) as hf_model: if model.startswith("THUDM/chatglm3"): hf_model.model.get_output_embeddings = lambda: \ hf_model.model.transformer.output_layer hf_outputs = hf_model.generate_greedy_logprobs_limit( example_prompts, max_tokens, num_logprobs) with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.generate_greedy_logprobs( example_prompts, max_tokens, num_logprobs) check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", ) if use_rocm_aiter: # this is to ensure that vllm engine # has deallocated the memory before running the next # unit tests. On ROCm, when using AITER # the memory might not be deallocated completely # before running the next test case torch.cuda.synchronize()