# SPDX-License-Identifier: Apache-2.0 # Adapted from https://github.com/sgl-project/sglang/blob/main/test/srt/test_block_int8.py import itertools import pytest import torch from vllm.config import VllmConfig, set_current_vllm_config from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.quantization.utils.int8_utils import ( w8a8_block_int8_matmul) from vllm.platforms import current_platform from .utils_block import native_w8a8_block_matmul if current_platform.get_device_capability() < (7, 0): pytest.skip("INT8 Triton requires CUDA 7.0 or higher", allow_module_level=True) # For test def native_per_token_group_quant_int8(x, group_size, eps=1e-10, dtype=torch.int8): """Function to perform per-token-group quantization on an input tensor `x` using native torch. It converts the tensor values into int8 values and returns the quantized tensor along with the scaling factor used for quantization. """ assert (x.shape[-1] % group_size == 0 ), "the last dimension of `x` cannot be divisible by `group_size`" assert x.is_contiguous(), "`x` is not contiguous" iinfo = torch.iinfo(dtype) int8_min = iinfo.min int8_max = iinfo.max x_ = x.reshape(x.numel() // group_size, group_size) # Use float32 for scale calculation for stability amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32) x_s = amax / int8_max x_q = (x_.to(torch.float32) / x_s).round().clamp( min=int8_min, max=int8_max).to(dtype) # Round before clamping x_q = x_q.reshape(x.shape) x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, )) return x_q, x_s # For test def torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape): """This function performs fused moe with block-wise quantization using native torch.""" B, D = a.shape a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device) score = torch.softmax(score, dim=-1, dtype=torch.float32) topk_weight, topk_ids = torch.topk(score, topk) topk_weight = topk_weight.view(-1) topk_ids = topk_ids.view(-1) _, block_k = block_shape[0], block_shape[1] a_q, a_s = native_per_token_group_quant_int8(a, block_k) for i in range(w1.shape[0]): mask = topk_ids == i if mask.sum(): inter_out = native_w8a8_block_matmul(a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype) act_out = SiluAndMul().forward_native(inter_out) act_out_q, act_out_s = native_per_token_group_quant_int8( act_out, block_k) act_out = act_out.to(torch.float32) out[mask] = native_w8a8_block_matmul(act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype) return (out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1) DTYPES = [torch.half, torch.bfloat16] M = [1, 33, 64, 222] N = [128, 1024] K = [256, 4096] E = [8, 24] TOP_KS = [2, 6] # BLOCK_SIZE = [[64, 64], [64, 128], [128, 64], [128, 128]] BLOCK_SIZE = [[128, 128]] SEEDS = [0] @pytest.fixture(autouse=True, scope="module") def setup_cuda(): """Sets the default CUDA device for all tests in this module.""" torch.set_default_device("cuda") @pytest.mark.parametrize("M,N,K,block_size,out_dtype,seed", itertools.product(M, N, K, BLOCK_SIZE, DTYPES, SEEDS)) @torch.inference_mode() def test_w8a8_block_int8_matmul(M, N, K, block_size, out_dtype, seed): torch.manual_seed(seed) factor_for_scale = 1e-2 int8_info = torch.iinfo(torch.int8) int8_max, int8_min = int8_info.max, int8_info.min A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * int8_max A_fp8 = A_fp32.clamp(min=int8_min, max=int8_max).to(torch.float8_e4m3fn) B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * int8_max B_fp8 = B_fp32.clamp(min=int8_min, max=int8_max).to(torch.float8_e4m3fn) block_n, block_k = block_size[0], block_size[1] n_tiles = (N + block_n - 1) // block_n k_tiles = (K + block_k - 1) // block_k As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale ref_out = native_w8a8_block_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) out = w8a8_block_int8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) rel_diff = (torch.mean( torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) / torch.mean(torch.abs(ref_out.to(torch.float32)))) assert rel_diff < 0.001 @pytest.mark.parametrize( "M, N, K, E, topk, block_size, dtype, seed", itertools.product(M, N, K, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS)) @torch.inference_mode() def test_w8a8_block_int8_fused_moe(M, N, K, E, topk, block_size, dtype, seed): """Tests the fused_moe kernel with W8A8 INT8 block quantization against a native torch reference.""" torch.manual_seed(seed) # Use a smaller factor for scale initialization to prevent large # values/overflow especially when output dtype might be float16 factor_for_scale = 1e-2 int8_info = torch.iinfo(torch.int8) int8_max, int8_min = int8_info.max, int8_info.min a = torch.randn((M, K), dtype=dtype) / 10 w1_fp32 = (torch.rand( (E, 2 * N, K), dtype=torch.float32) - 0.5) * 2 * int8_max w1 = w1_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8) w2_fp32 = (torch.rand((E, K, N), dtype=torch.float32) - 0.5) * 2 * int8_max w2 = w2_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8) block_n, block_k = block_size[0], block_size[1] n_tiles_w1 = (2 * N + block_n - 1) // block_n n_tiles_w2 = (K + block_n - 1) // block_n k_tiles_w1 = (K + block_k - 1) // block_k k_tiles_w2 = (N + block_k - 1) // block_k w1_s = (torch.rand( (E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale) w2_s = (torch.rand( (E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale) score = torch.randn((M, E), dtype=dtype) # Set the context to avoid lots of warning spam. vllm_config = VllmConfig() with set_current_vllm_config(vllm_config): out = fused_moe( a, w1, w2, score, topk, renormalize=False, use_int8_w8a8=True, w1_scale=w1_s, w2_scale=w2_s, block_shape=block_size, ) ref_out = torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_size) # Check results rel_diff = (torch.mean( torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) / torch.mean(torch.abs(ref_out.to(torch.float32)))) assert rel_diff < 0.06