# SPDX-License-Identifier: Apache-2.0 import base64 import numpy as np import openai import pytest import pytest_asyncio import requests from vllm.entrypoints.openai.protocol import EmbeddingResponse from vllm.transformers_utils.tokenizer import get_tokenizer from ...models.embedding.utils import check_embeddings_close from ...utils import RemoteOpenAIServer MODEL_NAME = "intfloat/multilingual-e5-small" DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501 @pytest.fixture(scope="module") def server(): args = [ "--task", "embed", # use half precision for speed and memory savings in CI environment "--dtype", "bfloat16", "--enforce-eager", "--max-model-len", "512", "--chat-template", DUMMY_CHAT_TEMPLATE, ] with RemoteOpenAIServer(MODEL_NAME, args) as remote_server: yield remote_server @pytest_asyncio.fixture async def client(server): async with server.get_async_client() as async_client: yield async_client @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str): input_texts = [ "The chef prepared a delicious meal.", ] # test single embedding embedding_response = await client.embeddings.create( model=model_name, input=input_texts, encoding_format="float", ) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 1 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 11 assert embeddings.usage.total_tokens == 11 # test using token IDs input_tokens = [1, 1, 1, 1, 1] embedding_response = await client.embeddings.create( model=model_name, input=input_tokens, encoding_format="float", ) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 1 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 5 assert embeddings.usage.total_tokens == 5 @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str): # test list[str] input_texts = [ "The cat sat on the mat.", "A feline was resting on a rug.", "Stars twinkle brightly in the night sky." ] embedding_response = await client.embeddings.create( model=model_name, input=input_texts, encoding_format="float", ) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 3 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 33 assert embeddings.usage.total_tokens == 33 # test list[list[int]] input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24], [25, 32, 64, 77]] embedding_response = await client.embeddings.create( model=model_name, input=input_tokens, encoding_format="float", ) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 4 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 17 assert embeddings.usage.total_tokens == 17 @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_conversation_embedding(server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str): messages = [{ "role": "user", "content": "The cat sat on the mat.", }, { "role": "assistant", "content": "A feline was resting on a rug.", }, { "role": "user", "content": "Stars twinkle brightly in the night sky.", }] chat_response = requests.post( server.url_for("v1/embeddings"), json={ "model": model_name, "messages": messages, "encoding_format": "float", }, ) chat_response.raise_for_status() chat_embeddings = EmbeddingResponse.model_validate(chat_response.json()) tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast") prompt = tokenizer.apply_chat_template( messages, chat_template=DUMMY_CHAT_TEMPLATE, add_generation_prompt=True, continue_final_message=False, tokenize=False, ) completion_response = await client.embeddings.create( model=model_name, input=prompt, encoding_format="float", # To be consistent with chat extra_body={"add_special_tokens": False}, ) completion_embeddings = EmbeddingResponse.model_validate( completion_response.model_dump(mode="json")) assert chat_embeddings.id is not None assert completion_embeddings.id is not None assert chat_embeddings.created <= completion_embeddings.created assert chat_embeddings.model_dump( exclude={"id", "created"}) == (completion_embeddings.model_dump( exclude={"id", "created"})) @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_batch_base64_embedding(client: openai.AsyncOpenAI, model_name: str): input_texts = [ "Hello my name is", "The best thing about vLLM is that it supports many different models" ] responses_float = await client.embeddings.create(input=input_texts, model=model_name, encoding_format="float") float_data = [d.embedding for d in responses_float.data] responses_base64 = await client.embeddings.create(input=input_texts, model=model_name, encoding_format="base64") base64_data = [] for data in responses_base64.data: base64_data.append( np.frombuffer(base64.b64decode(data.embedding), dtype="float32").tolist()) check_embeddings_close( embeddings_0_lst=float_data, embeddings_1_lst=base64_data, name_0="float", name_1="base64", ) # Default response is float32 decoded from base64 by OpenAI Client responses_default = await client.embeddings.create(input=input_texts, model=model_name) default_data = [d.embedding for d in responses_default.data] check_embeddings_close( embeddings_0_lst=float_data, embeddings_1_lst=default_data, name_0="float", name_1="default", ) @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_single_embedding_truncation(client: openai.AsyncOpenAI, model_name: str): input_texts = [ "Como o Brasil pode fomentar o desenvolvimento de modelos de IA?", ] # test single embedding embedding_response = await client.embeddings.create( model=model_name, input=input_texts, extra_body={"truncate_prompt_tokens": 10}) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 1 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 10 assert embeddings.usage.total_tokens == 10 input_tokens = [ 1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728, 9901, 340, 2229, 385, 340, 315, 28741, 28804, 2 ] embedding_response = await client.embeddings.create( model=model_name, input=input_tokens, extra_body={"truncate_prompt_tokens": 10}) embeddings = EmbeddingResponse.model_validate( embedding_response.model_dump(mode="json")) assert embeddings.id is not None assert len(embeddings.data) == 1 assert len(embeddings.data[0].embedding) == 384 assert embeddings.usage.completion_tokens == 0 assert embeddings.usage.prompt_tokens == 10 assert embeddings.usage.total_tokens == 10 @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_single_embedding_truncation_invalid(client: openai.AsyncOpenAI, model_name: str): input_texts = [ "Como o Brasil pode fomentar o desenvolvimento de modelos de IA?", ] with pytest.raises(openai.BadRequestError): response = await client.embeddings.create( model=model_name, input=input_texts, extra_body={"truncate_prompt_tokens": 8193}) assert "error" in response.object assert "truncate_prompt_tokens value is greater than max_model_len. "\ "Please, select a smaller truncation size." in response.message