#include "type_convert.cuh" #include "dispatch_utils.h" #include #include #ifndef USE_ROCM #include #else #include #endif namespace vllm { // TODO(woosuk): Further optimize this kernel. template __global__ void rms_norm_kernel( scalar_t* __restrict__ out, // [..., hidden_size] const scalar_t* __restrict__ input, // [..., hidden_size] const scalar_t* __restrict__ weight, // [hidden_size] const float epsilon, const int num_tokens, const int hidden_size) { __shared__ float s_variance; float variance = 0.0f; for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) { const float x = (float)input[blockIdx.x * hidden_size + idx]; variance += x * x; } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage reduceStore; variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x); if (threadIdx.x == 0) { s_variance = rsqrtf(variance / hidden_size + epsilon); } __syncthreads(); for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) { float x = (float)input[blockIdx.x * hidden_size + idx]; out[blockIdx.x * hidden_size + idx] = ((scalar_t)(x * s_variance)) * weight[idx]; } } /* Function specialization in the case of FP16/BF16 tensors. Additional optimizations we can make in this case are packed and vectorized operations, which help with the memory latency bottleneck. */ template __global__ std::enable_if_t<(width > 0) && _typeConvert::exists> fused_add_rms_norm_kernel( scalar_t* __restrict__ input, // [..., hidden_size] scalar_t* __restrict__ residual, // [..., hidden_size] const scalar_t* __restrict__ weight, // [hidden_size] const float epsilon, const int num_tokens, const int hidden_size) { // Sanity checks on our vector struct and type-punned pointer arithmetic static_assert(std::is_pod_v<_f16Vec>); static_assert(sizeof(_f16Vec) == sizeof(scalar_t) * width); const int vec_hidden_size = hidden_size / width; __shared__ float s_variance; float variance = 0.0f; /* These and the argument pointers are all declared `restrict` as they are not aliased in practice. Argument pointers should not be dereferenced in this kernel as that would be undefined behavior */ auto* __restrict__ input_v = reinterpret_cast<_f16Vec*>(input); auto* __restrict__ residual_v = reinterpret_cast<_f16Vec*>(residual); auto* __restrict__ weight_v = reinterpret_cast*>(weight); for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) { int id = blockIdx.x * vec_hidden_size + idx; _f16Vec temp = input_v[id]; temp += residual_v[id]; variance += temp.sum_squares(); residual_v[id] = temp; } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage reduceStore; variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x); if (threadIdx.x == 0) { s_variance = rsqrtf(variance / hidden_size + epsilon); } __syncthreads(); for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) { int id = blockIdx.x * vec_hidden_size + idx; _f16Vec temp = residual_v[id]; temp *= s_variance; temp *= weight_v[idx]; input_v[id] = temp; } } /* Generic fused_add_rms_norm_kernel The width field is not used here but necessary for other specializations. */ template __global__ std::enable_if_t<(width == 0) || !_typeConvert::exists> fused_add_rms_norm_kernel( scalar_t* __restrict__ input, // [..., hidden_size] scalar_t* __restrict__ residual, // [..., hidden_size] const scalar_t* __restrict__ weight, // [hidden_size] const float epsilon, const int num_tokens, const int hidden_size) { __shared__ float s_variance; float variance = 0.0f; for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) { scalar_t z = input[blockIdx.x * hidden_size + idx]; z += residual[blockIdx.x * hidden_size + idx]; float x = (float)z; variance += x * x; residual[blockIdx.x * hidden_size + idx] = z; } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage reduceStore; variance = BlockReduce(reduceStore).Reduce(variance, cub::Sum{}, blockDim.x); if (threadIdx.x == 0) { s_variance = rsqrtf(variance / hidden_size + epsilon); } __syncthreads(); for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) { float x = (float)residual[blockIdx.x * hidden_size + idx]; input[blockIdx.x * hidden_size + idx] = ((scalar_t)(x * s_variance)) * weight[idx]; } } } // namespace vllm void rms_norm(torch::Tensor& out, // [..., hidden_size] torch::Tensor& input, // [..., hidden_size] torch::Tensor& weight, // [hidden_size] double epsilon) { int hidden_size = input.size(-1); int num_tokens = input.numel() / hidden_size; dim3 grid(num_tokens); dim3 block(std::min(hidden_size, 1024)); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] { vllm::rms_norm_kernel<<>>( out.data_ptr(), input.data_ptr(), weight.data_ptr(), epsilon, num_tokens, hidden_size); }); } #define LAUNCH_FUSED_ADD_RMS_NORM(width) \ VLLM_DISPATCH_FLOATING_TYPES( \ input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \ vllm::fused_add_rms_norm_kernel \ <<>>(input.data_ptr(), \ residual.data_ptr(), \ weight.data_ptr(), epsilon, \ num_tokens, hidden_size); \ }); void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size] torch::Tensor& residual, // [..., hidden_size] torch::Tensor& weight, // [hidden_size] double epsilon) { int hidden_size = input.size(-1); int num_tokens = input.numel() / hidden_size; dim3 grid(num_tokens); /* This kernel is memory-latency bound in many scenarios. When num_tokens is large, a smaller block size allows for increased block occupancy on CUs and better latency hiding on global mem ops. */ const int max_block_size = (num_tokens < 256) ? 1024 : 256; dim3 block(std::min(hidden_size, max_block_size)); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); /*If the tensor types are FP16/BF16, try to use the optimized kernel with packed + vectorized ops. Max optimization is achieved with a width-8 vector of FP16/BF16s since we can load at most 128 bits at once in a global memory op. However, this requires each tensor's data to be aligned to 16 bytes. */ auto inp_ptr = reinterpret_cast(input.data_ptr()); auto res_ptr = reinterpret_cast(residual.data_ptr()); auto wt_ptr = reinterpret_cast(weight.data_ptr()); bool ptrs_are_aligned = inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0; if (ptrs_are_aligned && hidden_size % 8 == 0) { LAUNCH_FUSED_ADD_RMS_NORM(8); } else { LAUNCH_FUSED_ADD_RMS_NORM(0); } }