# SPDX-License-Identifier: Apache-2.0 import argparse import json import math import os from typing import Any def convert_to_pytorch_benchmark_format(args: argparse.Namespace, metrics: dict[str, list], extra_info: dict[str, Any]) -> list: """ Save the benchmark results in the format used by PyTorch OSS benchmark with on metric per record https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database """ records = [] if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False): return records for name, benchmark_values in metrics.items(): record = { "benchmark": { "name": "vLLM benchmark", "extra_info": { "args": vars(args), }, }, "model": { "name": args.model, }, "metric": { "name": name, "benchmark_values": benchmark_values, "extra_info": extra_info, }, } tp = record["benchmark"]["extra_info"]["args"].get( "tensor_parallel_size") # Save tensor_parallel_size parameter if it's part of the metadata if not tp and "tensor_parallel_size" in extra_info: record["benchmark"]["extra_info"]["args"][ "tensor_parallel_size"] = extra_info["tensor_parallel_size"] records.append(record) return records class InfEncoder(json.JSONEncoder): def clear_inf(self, o: Any): if isinstance(o, dict): return {k: self.clear_inf(v) for k, v in o.items()} elif isinstance(o, list): return [self.clear_inf(v) for v in o] elif isinstance(o, float) and math.isinf(o): return "inf" return o def iterencode(self, o: Any, *args, **kwargs) -> Any: return super().iterencode(self.clear_inf(o), *args, **kwargs) def write_to_json(filename: str, records: list) -> None: with open(filename, "w") as f: json.dump(records, f, cls=InfEncoder)