Inspired by #5146, this PR improves FP8 quantize kernel by vectorizing data transfer to better utilize memory bandwidth. Microbenchmark shows that this improved kernel can achieve 1.0x-1.5x speedup (especially when hidden size is large).
In details, we applied 3 optimizations:
- Use inverted scale so that most divisions are changed to multiplications.
- Unroll the loop by 4 times to improve ILP.
- Use vectorized 4 to transfer data between HBM and SRAM.
Provide an initial support to FP8 computation. This PR is inspired by HuggingFace TGI: huggingface/text-generation-inference#1726
This feature can be enabled with --quantization fp8 or -q fp8 when launching an engine.
Algorithm:
We still load a model checkpoint in FP16/BF16. After the weights are loaded, Fp8LinearMethod calculates the per-tensor scaling factor of weights and quantizes the weights accordingly. The scaling factor will then be stored for future use. Meanwhile, the per-tensor scaling factor for activations is calculated in every forward pass.
Initial Results:
Currently tested Mistral-7B on 1xH100. With prompt length ~5 and decoding length 128:
BF16: 1.47s
FP8: 1.66s
I'll try to use larger models and try to find more performance bottleneck. Meanwhile, you're welcome to try this code.