20 Commits

Author SHA1 Message Date
Divakar Verma
a66cf40b20
[Kernel][ROCm][AMD] enable fused topk_softmax kernel for moe layer (#4927)
This PR enables the fused topk_softmax kernel used in moe layer for HIP
2024-06-02 14:13:26 -07:00
simon-mo
533c217792 Fix cutlass sm_90a vesrion in CMakeList 2024-05-31 02:13:01 +00:00
Simon Mo
45a1a69b98
[Build] Disable sm_90a in cu11 (#5141) 2024-05-30 14:37:16 -07:00
Dipika Sikka
a1242324c9
[Kernel] Initial Activation Quantization Support (#4525)
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-05-23 21:29:18 +00:00
Tyler Michael Smith
2060e93659
[Kernel] Add w8a8 CUTLASS kernels (#4749) 2024-05-16 18:32:50 -04:00
Alexander Matveev
6979ade384
Add GPTQ Marlin 2:4 sparse structured support (#4790)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-05-16 12:56:15 -04:00
Cody Yu
c833101740
[Kernel] Refactor FP8 kv-cache with NVIDIA float8_e4m3 support (#4535) 2024-05-09 18:04:17 -06:00
kliuae
ff5abcd746
[ROCm] Add support for Punica kernels on AMD GPUs (#3140)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2024-05-09 09:19:50 -07:00
Michael Goin
d627a3d837
[Misc] Upgrade to torch==2.3.0 (#4454) 2024-04-29 20:05:47 -04:00
Robert Shaw
73c8d677e5
[Kernel] Marlin Expansion: Support AutoGPTQ Models with Marlin (#3922)
Co-authored-by: alexm <alexm@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-29 09:35:34 -07:00
Woosuk Kwon
468d761b32
[Misc] Reduce supported Punica dtypes (#4304) 2024-04-23 18:54:33 -07:00
Philipp Moritz
eace8bf0b9
[Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
James Fleming
2b7949c1c2
AQLM CUDA support (#3287)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-23 13:59:33 -04:00
youkaichao
ca81ff5196
[Core] manage nccl via a pypi package & upgrade to pt 2.2.1 (#3805) 2024-04-04 10:26:19 -07:00
Adrian Abeyta
2ff767b513
Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
bigPYJ1151
0e3f06fe9c
[Hardware][Intel] Add CPU inference backend (#3634)
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
2024-04-01 22:07:30 -07:00
bnellnm
3ad438c66f
Fix build when nvtools is missing (#3698) 2024-03-29 18:52:39 -07:00
James Whedbee
80e254834d
[Bugfix] Fix ROCm support in CMakeLists.txt (#3534) 2024-03-20 21:05:03 +00:00
Allen.Dou
84eaa68425
Abort when nvcc command is not found in the PATH (#3527) 2024-03-20 09:28:29 -07:00
bnellnm
9fdf3de346
Cmake based build system (#2830) 2024-03-18 15:38:33 -07:00